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Mr Stephen Miles, 
The Minister of Health, 
Queensland Government. 
 
Dear Hon. Mr Miles, 
 
I am advised that under pressure from the popular press, the Queensland Government is presently considering re‐
scheduling and down‐scheduling the protections for the public against cannabis. 
 
In my view this would be a grave error. 
 
Many sensible and cautious people have advocated that the introduction of an cannabinoid as a therapeutic agent 
should follow similar precautions to those for any other proposed medicine.  They argue:  “Why should cannabinoids 
/ and or cannabis itself be any different from any other medicine which is required to undergo formal and careful 
tests to satisfy drug regulators?” 
 
I agree of course that proper formal and duly conducted clinical trials are required before any medicine is 
introduced to widespread use. 
 
The Government would I am sure be well aware that the medicalization of cannabis and or cannabinoids overseas 
has been nothing more than a ruse for the full legalization of cannabis and cannabinoids which generally follows 
very rapidly thereafter. 
 
However clinical trials do NOT establish the long term safety of drugs, as they are usually conducted over only a few 
months.   
 
Secondly tests for genotoxicity need to be very carefully conducted outside of clinical trials. 
 
I note that the registered prescribing information for both “Epidiolex” (cannabidiol) and “Sativex”, the THC / 
cannabidiol mixture carry strong warnings relating to genotoxicity. 
 
I was appalled learn recently that Atrial Septal Defect (ASD) has sky‐rocketed in many jurisdictions where cannabis is 
widely used including Arizona, Colorado, Hawaii and Kentucky.  Indeed, as shown below these defects are rising 
sharply, even when shown on a logarithmic plot.  ASD has previously been linked with cannabis in a large Hawaiian 
study – and now we see it showing up on US national neonatal teratology figures!!!  Please see graphs below. 
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Indeed modelling this relationship indicates that in Utah, where cannabis use was recently only 3%, one would 
expect a predicted ASD rate of only 19.83 / 10,000 live births, whereas in Colorado amongst young people 18‐25 
years of age where past month cannabis use was recently found to be 32% could expected a modelled ASD rate of 
211.52 / 10, 000 live births, which represents a 1,067% elevation in the respective rates. 
 
We are naturally preparing these observations for publication in the peer reviewed literature. 
 
One notes that autism is growing exponentially in every American jurisdiction where it is being measured.  Cannabis 
has been previously linked with these changes in the brain by damaging the brain development during pregnancy, 
neonatal life and growth and development until at least the early 20’s.  Whilst it has not been proven that cannabis 
is the proximate or major cause for this alarming state of affairs, it is the most obvious – and indeed known – 
environmental neurotoxin and neuroteratogen. 
 
Similarly in the north of California where the cannabis industry is presently burgeoning, a revival of gastroschisis and 
autism has been documented.   
 
Indeed our letter to JAMA surgery on just this these will be published in the next few weeks. 
 
I draw your attention to the attached paper which recently demonstrated that the known heavy epigenetic footprint 
of cannabis on the epigenome, which controls gene expression and regulation during both developmental and adult 
life, has been documented to be damaged in both humans and rats, and in similar ways.  The neurobehavioural and 
neurotoxicological changes observed in humans and mice are virtually identical, as cannabis is known to control 
almost every major step in brain development. 
 
Documented evidence of extensive damage to the epigenome of human and rodent sperm even prior to 
fertilization necessarily implies that the human eggs and sperm are prematurely aged even prior to 
fertilization!!!  The implications of this are horrific for any health system!!! 
 
I have been asked to write an opinion piece on this issue recently for a major international epigenomics journal 
which will hopefully also soon be made available. 
 
Indeed a simple internet search will readily demonstrate that Colorado lawmakers are considering declaring a state 
of emergency there in relation to the autism epidemic currently growing at a whopping 30% each two years! 
 
There is much more to say on the issue of the genotoxicity of cannabis and cannabinoids. 
 
THE MOST IMPORTANT POINT HOWEVER IS THAT GENOTOXICITY IS A FUNCTION OF MANY OF THE MOST 
COMMON CANNABINOIDS IN CANNABIS, AND IS NOT LIMITED SIMPLY TO THC ITSELF. 
 
Regulations which seek to control the THC content of hemp, as was recently done in the USA by the Farm Act, reveal 
a very serious shortcoming of the understanding of both the potency of cannabinoids and the developmental 
neurobiology, and the profound role of cannabinoids in perturbing the epigenome. 
 
I am working hard in the area of neonatal epidemiology to delineate these various trends more fully in the area of 
neonatal epidemiology. 
 
I have every expectation that in the coming months we will be submitting major research pieces to leading 
international medical journals on these subjects. 
 
The point about Atrial Septal Defect of course is that it has not been previously been understood to have been a 
clearly cannabis related teratogenic outcome.  However, with documented epidemics of ASD in Kentucky, Hawaii, 
Colorado and Alaska, all places where the cannabis industry is busy or growing rapidly, there can really be little 
doubt about the importance of the association.  You would I am sure be interested to learnt that the Hawaiian study 
indicated an increased risk of 6‐fold, with a confidence interval range from 2‐14 times background. 
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Paradoxically, the USA Farm bill, which was supposed to bring relief to the hard hit farmers of Kentucky by allowing 
them to grow hemp to replace tobacco, may actually the cause of their undoing with the Kentucky ASD rate actually 
“going vertical” in all probability from this cause.  Indeed the internet tell me that a 500 acre hemp farm is now 
planned for Kentucky – based by Australian investor dollars! 
 
Indeed the question of the hour must surely be: “How many more defects will turn out to be cannabis related?” 
 
You may consider the obvious close relationship between cannabis consumption and the chromosomal trisomies 
including Down’s syndrome shown in the maps below.  This was also found in Hawaii. 
 
USA’s CDC have twice stated that cannabis causes anencephaly, babies born without brains and mostly do not live 
very long (less than one hour).  However in linking cannabis with Downs syndrome and atrial septal defect these 
are some of the commonest of all defects – which cannabis make much more common. 
 
For indeed cannabinoids act at the cellular molecular and epigenomic levels in myriad ways so their fallout could be 
very profound indeed.  Indeed the most accurate paper in the whole area was the attached paper from Hawaii 
which identified 21 defects related to cannabis (see Forrester 2007, attached). 
 
This paper by Forrester was also the only one to correctly explain the recent outbreak of babies born with no arms 
and cows born without legs in France near the Swiss border, but not in nearby Switzerland:  cannabis is allowed in 
the food supply in France but not in Switzerland.  So it seems obvious that cannabis is the cause there, just as was 
found earlier in Hawaii. 
 
Closer to home, there was an outbreak of gastroschisis in 2011  it the northern rivers high cannabis area of 
NSW.  This accords well with what is known from the literature as all seven papers examining cannabis and 
gastroschisis have reported a positive relationship. However the relationship was covered up at that time due to 
grossly incompetent statistics (the Bonferroni multiple testing correction which was erroneously applied was 16 
times excessive to what it should have been; 150 vs. 9), a statistical analysis which I am told was done in Sydney.  i.e. 
Major public heath blunders for which Queensland tax payers have foot the bill for many years! 
 
Were you aware that the costs of care for cannabis related defects falls on the Queensland taxpayer at over five 
times the rates of non‐cannabis related defects???  Obviously most of this is coming from the neighbouring high 
cannabis growing and consuming areas in northern NSW.  This data is show up in Queensland health’s own data 
summarized graphically below. 
 
My recent submissions to FDA along these lines are also attached. 
 
Should you wish to learn more I am of course happy to provide further information should you require it at that 
time. 
 
Indeed I would call upon you not to be swayed by the folly of public opinion and informed media mass hysteria, 
but I would call upon you to work with serious practising clinicians and public health personnel to broadcast far 
and wide the now increasingly obvious harms of cannabis and to dispel the well‐known, radically false view of 
cannabis as a somehow “soft drug.” 
 
I was also particularly concerned that my colleagues in Colorado are seeing an epidemic of obviously damaged and 
abnormal children there, just as I am here amongst my drug addicted patients and their offspring.   
 
The public health implications could hardly be more obvious – or more dramatic.  We are thus not in the least 
surprised to see these trends which we observe every day in our clinics, showing up in national epidemiology 
figures. 
 
Similar concerns apply to mental health in young people.  Again major US surveys show a close concordance, both 
over time and across geographical space, between cannabis consumption and severe and abnormal mental health 
outcomes.  Again I am involved with senior statistical and data science analysts to report these trends further in the 
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research literature.  This close link however is well recognized by the Substance Abuse and Mental Health 
Administration (SAMHSA) in USA. 
 
For information you will be interested to learn that I am now a full Professor of Medicine at both the Edith Cowan 
University and University of Western Australia in Perth. 
 
You will also be aware that I have had one of the largest practices in addiction medicine in Queensland of any doctor 
for the last 20 years.  This is a field in which I have extensive practical and academic involvement. 
 
Yours sincerely, 
 
Professor Dr. Stuart Reece, 

 
Brisbane, 
Queensland. 
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These issues are all well covered by a rich recent literature including reviews from such major
international authorities as Dr Nora Volkow Director of NIDA at NIH 1,3,5,110-112, Professor
Wayne Hall 113-117 and others 118.

Cannabinoid Therapeutics

In my view the therapeutic effects of cannabinoids have been wildly inflated by the press.

Moreover, with over 1,000 studies listed for cannabinoids on clinicaltrials.gov, the chance of
a type I experimental error, or studies being falsely reported to be positive when in fact they
are not, is at last 25/1,000 at the 0.05 level.

THC as dronabinol is actually a failed drug from USA which has such a high incidence of
side effects that it was rarely used as superior agents are readily available for virtually all of
its touted and alleged therapeutic applications. My American liaisons advise that dronabinol
sales have climbed in recent times as patients use it as a ruse to avoid detection of
cannabinoid use at work in states where it is not yet legal. So when I call is a failed
therapeutic I mean in a traditional sense, not in the novel way it is now applied for flagrantly
flouting the law.

In considering the alleged benefits of cannabis one has to be particularly mindful of cannabis
addiction in which cannabinoids will alleviate the effect of drug withdrawal as they do in any
other addiction. Moreover, the fact that cannabis itself is known to cause both pain and
nausea, greatly complicates the interpretation of many studies.

I also have the following concerns which relate in sum to the arteriopathy and vasculopathy
and the genotoxicity of cannabis, tetrahydrocannabinol and likely including cannabidiol
and various other cannabinoids:

Cannabinoid Arteriopathy

12) Cannabis is now known to have an important arteriopathic effect and cardiovascular
toxic effect 5,110,119-183. Particularly noteworthy amongst these various reports are two
reports by Dr Nora Volkow in 2014, the Director of the National Institute of Drug
Abuse at NIH to the New England Journal of Medicine which together document the
adverse cardiovascular and cerebrovascular effects of cannabis at the epidemiological
level 5,110; a report from our own clinic in 2016 documenting the effect of cannabis to
increase cardiovascular aging to BMJ Open 183; a series of reports showing a fivefold
increase in the rate of heart attack within one hour after cannabis smoking 121-123;
several reports of cannabis related arteritis 162,163,168,170,171; other reports of the
cerebrovascular actions of cannabis 184-187; documentation that cannabis exposure
increases arterial stiffness and cardiovascular and organismal aging 183; and a recent
report showing that human endothelial vascular function – vasodilation - is
substantially inhibited within just one minute of cannabis exposure 188.

13) It is also relevant that a synthetic cannabinoid was recently shown to directly induce
both thromboxane synthase and lipoxygenase, and so be directly vasoconstrictive,
prothrombotic and proinflammatory 189.

-
14) Vascular aging, including both macrovascular and microvascular aging is a major

pathological feature not only because most adults in western nations die from
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myocardial infarction or cerebrovascular accidents, but also because local blood flow
and microvascular function is a key determinant of stem cell niche activity in many
stem cell beds. This has given rise to the vascular theory of aging which has been
produced by some of the leading researchers at the National Health Lung and Blood
Institute at NIH, amongst many others 190-192. It can thus be said not only that “You are
as old as your (macrovascular) arteries”, but also that “you are as old as your
(microvascular) stem cells.” Hence the now compelling evidence for the little known
arteriopathic complications of cannabis and cannabinoids, carry very far reaching
implications indeed. This was confirmed directly in the clinical study of arterial
stiffness from my clinic mentioned above 119.

-
15) Whilst aging, myocardial infarction and cerebrovascular accidents are all highly

significant outcomes and major public health endpoints, these effects assume added
significance in the context of congenital anomalies. Some congenital defects, such as
gastroschisis, are thought to be due to a failure of vascular supply of part of the anterior
abdominal wall 193-198. Hence in one recent study the unadjusted odds ratio of having a
gastroschisis pregnancy amongst cannabis users (O.R.=8.03, 95%C.I. 5.63-11.46) was
almost as high as that for heroin, cocaine and amphetamine users (O.R.= 9.35, 95%C.I.
6.64-13.15), and the adjusted odds ratio for any illicit drug use (of which was 84%
cannabis) was O.R.=3.54 (95%C.I. 2.22-5.63) 199 and for cannabis alone was said by
these Canadian authors to be O.R.=3.0 200. Hence cannabis related vasculopathy -
arteriopathy beyond its very serious implications in adults also carries implications for
paediatric and congenital disorders and may also constitute a major teratogenic
mechanism.

Cannabinoid Genotoxicity and Teratogenesis

16) Cannabis is associated with 11 cancers (lung, throat, bladder, airways, testes, prostate,
cervix, larynx) including 201,202;

17) Four congenital and thus inherited cancers (rhabdomyosarcoma, neuroblastoma,ALL,
AML and AMML) 201,202;

18) Sativex product insert in many nations carries standard warning against its use by
males or females who might be having a baby 203.

19) Cannabis – and likely also CBD – is known to be associated with epigenetic changes
30 some of which are believed to be inheritable for at least four generations 204;

20) Cannabis is known to interfere with tubulin synthesis 205-209 and binding and it also
acts via Stathmin so that microtubule function is impeded 210. This leads directly to
micronucleus formation 113,211,212. Cannabis has been known to test positive in the
micronucleus assay for over fifty years 113,117,211. This is a major and standard test for
genotoxicity. Micronucleus formation is known to lead directly to major
chromosomal toxicity including chromosomal shattering – so-called chromothripsis –
and is known to be associated with cell death, cancerogenesis and major foetal
abnormalities 202,213-215.
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21) Cannabis has also been linked definitively with congenital heart disease is a statement
by the American Heart Association and the American Academy of Pediatrics in 2007
216, on the basis of just three epidemiological studies, all done in the days before
cannabis became so concentrated. Congenital heart defects have also been linked with
the father’s cannabis use 217 . Indeed, one study showed that paternal cannabis use was
the strongest risk factor of all for preventable congenital cardiac defects 218.

22) Cannabis has also been linked with gastroschisis in at least seven cohort and case
control studies 199,219-224 some of which are summarized in a Canadian Government
Report 200. In that report the geographic incidence of most major congenital anomalies
closely paralleled the use of cannabis as described in other major Canadian reports
225. The overall adjusted odds ratio for cannabis induction of gastroschisis was
quoted by these authors as 3.0 200.

23) Moreover, outbreaks of both congenital heart disease 226 and gastroschisis in North
Carolina also paralleled the local use of cannabis in that state as described by
Department of Justice Reports 227. The incidence of gastroschisis was noted to double
in North Carolina 1999-2001 in the same period the cannabis trade there was rising
228. Figures of cannabis use in pregnant women in California by age were also
recently reported to JAMA 229, age group trend lines by age group which closely
approximate those reported by CDC for the age incidence of gastroschisis in the USA
230 (Figure 1). Importantly much of the cannabis coming into both North Carolina
and Florida is said to originate in Mexico 227,231. An eight-fold rise in the rate of
gastroschisis has been reported from Mexico 232. Gastroschisis has also risen in
Washington state 233.

24) Cannabis has also been associated with 17 other major congenital defects by major
Hawaiian epidemiological study reported by Forrester in 2007 when it was used alone
221. When considered in association with other drug use – which in many cases
cannabis leads to – cannabis use was associated with a further 19 major congenital
defects.

25) In addition to the effect of cannabinoids on the epigenome and microtubules,
cannabinoids have been firmly linked to a reduction of the ability of the cell to
produce energy from their mitochondria 78,82,91,234-249. An extensive and robust
evidence base 244 now links cellular energy generation to the maintenance and care of
cellular DNA 250-253. Moreover, as the cellular energy charge falls so too DNA
maintenance collapses, and indeed, the cell can spiral where its remaining energy
resources, particularly as NAD+, are routed into failing and futile DNA repair, the cell
slips into pseudohypoxic metabolism like the Warburg effect well known in
cancerogenesis 254, NAD+ falls below the level required for further energy generation
and cellular metabolism collapses. Hence this well-established collapse of the
mitochondrial energy charge and transmembrane potential forms a potent engine of
continuing and accelerating genotoxicity 255.
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26) Moreover, the well documented decline in mitochondrial respiration induced by
cannabinoids, including tetrahydrocannabinol, cannabidiol and anandamide 78,82,91,234-

242,244-248 achieves particular significance in the light of the robustly documented
decline in cellular energetics including NAD+ which not only occurs with age 251,256-

268 but indeed, has now been shown to be one of the primary drivers of cellular and
whole organismal aging 250-254,263,269-289. This close parallel is illustrated inFigure
2. It follows therefore that cannabinoid administration (including THC and CBD)
necessarily phenocopies cellular aging. This implies of course that cannabinoid
dependent patients are old at the cellular level. Indeed, normal human aging is
phenocopied in the clinical syndrome of cannabinoid dependence which includes
(most references are provided above):

1) Neurological deficits in:
i) attention,
ii) learning and
iii) memory;
iv) social withdrawal and disengagement and
v) academic and
vi) occupational underachievement

2) Psychiatric disorders including
i) Anxiety,
ii) Depression,
iii) Mixed Psychosis
iv) Bipolar Affective disorder and
v) Schizophrenia,

3) Respiratory disorders including:
i) Asthma
ii) Chronic Bronchitis (increased sputum production)
iii) Emphysema (Increased residual volume)
iv) Probably increased carcinomas of the aerodigestive tract

4) Immune suppression which generally implies
i) segmental immunostimulation in some parts of the immune system

since
the innate and adaptive immune systems exert profound homeostatic
mechanisms in response to suppression of one of its parts;
A Substantial literature on immunostimulation

5) Reproductive effects generally characterized by reduced
i) Male and
ii) Female fertility

6) Cardiovascular toxicity with elevated rates of
i) Myocardial infarction
ii) Cerebrovascular accident
iii) Arteritis
iv) Vascular age – vascular stiffness 119

7) Genotoxicity in
i) Respiratory epithelium and
ii) Gonadal tissues.

8) Osteoporosis 290-300
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9) Cancers of the
i) Head and neck
ii) Larynx
iii) Lung
iv) Leukaemia
v) Prostate
vi) Cervix
vii) Testes
viii) Bladder
ix) Childhood neuroblastoma
x) Childhood acute lymphoblastic leukaemia
xi) Childhood Acuter Myeloid and myelomonocytic leukaemia
xii) Childhood rhabdomyosarcoma 201,202.

The issue here of course is that cannabinoid dependence therefore copies without
exception all of the major disorders of old age, each of which is also faithfully
phenocopied by cannabis dependence.

The most prominent disorders of older age include:

1) Alzheimer’s disease
2) Cardiovascular and cerebrovascular disease
3) Osteoporosis
4) Systemic inflammatory syndrome
5) Changes in lung volume and the mechanics of breathing
6) Cancers

Hence this provides one powerful pathway by which cannabinoid exposure can replicate and
phenocopy the disorders of old age.

This is not of course to suggest that this is the only such pathway. Obviously changes of the
general level of immune activity, or alterations of the level of DNA repair occurring directly
or indirectly associated with cannabis use can form similar such pathways: both are well
documented in cannabis use and also in the aging literature as major pathways implicated in
systemic aging. Nevertheless, the decline in mitochondrial energetics together with its
inherent genotoxic implications does seem to be a particularly well substantiated and robustly
demonstrated pathway which must give serious pause to cannabinoid advocates if the
sustainability of the health and welfare systems is to be factored in together with any
consideration of individual patient, advocate and industrial-complex rights.

27) The genotoxicity of THC, CBD and CBN has been noted against sperm since at least
1999 (Zimmerman and Zimmerman in Nahas “Marijuana and Medicine” 1999,
Springer). This is clearly highly significant as sperm go directly into the formation of
the zygote and the new human individual.
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28) CB1R receptors are known to exist intracellularly on both the membranes of
endoplasmic reticulum and mitochondria. In both locations they can induce organellar
stress and major cell toxicity including disruption of DNA maintenance. Interestingly
mitochondrial outer membrane CB1R’s signal via a complex signaling chain
involving the G-protein transduction machinery, protein kinase A and cyclic-AMP
across the intermembrane space to the inner membrane and cristae, in a fashion
replicating much of the G-protein signaling occurring at the cell membrane. This
machinery is also implicated in mitonuclear signaling, and the mitonuclear DNA
balance between mitochondrial DNA and nuclear DNA transcriptional control, which
has long been implicated in inducing the mitochondrial unfolded protein cellular stress
response cell aging, stem cell behaviour and DNA genotoxic mechanisms 248,301.

29) You are no doubt aware that human sperm are structured like express outboard motors
behind DNA packets with layers of mitochondria densely coiled around the rotating
flagellum which powers their progress in the female reproductive tract (Figure 3).
These mitochondria also carry CB1R’s and are significantly inhibited even at 100
nanomolar THC. The acrosome reaction is also inhibited 239.

30) A similar arrangement is shown in Figure 4, where mitochondria are shown in green
surrounding the mitotic spindle (pink, with the chromosomes shown in blue), which
is the cellular machinery and apparatus of cell division. Mitosis and meiosis, the
classical processes of cell division, are highly energy dependent and mitochondria are
clearly positioned strategically to supply the required energy for this process, just as
they are positioned in proximity to the root of the sperm flagellum rotor in that
situation.

31) Cannabidiol is known to act via the PPARγ system 101,302-308. PPARγ is known to have
a major effect on gene expression, reproductive and embryonic and zygote function
during development 309-332 so that significant genotoxic and / or teratogenic effects
seem inevitable via this route. Drugs which act in this class, known as the
thiazolidinediones, are classed as category B3 in pregnancy and caution is indicated in
their use in pregnancy and lactation.

32) The Report of the Reproductive and Cancer Hazard Assessment Branch of the Office
of Environmental Health Hazard Assessment of the Health Department of California
was mentioned above in connection with the carcinogenicity of marijuana smoke 333.
Since virtually all mutagens are also teratogens it follows therefore from the basic
tenets of mutagenesis that if cannabis is unsafe as a known carcinogen it must also be
at the very least a putative teratogen.

33) CBD has also been noted to be a genotoxic in other studies 334-336.

34) All of which points to major teratogenic activity for both THC and CBD.
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Some of the quotations from Professor James Graham’s classical book on the effects of THC
in hamsters and white rabbits, the best animal models for human genotoxicity, bear repeating
337 :

a) “The concentration of THC was relatively low and the malignancy severe.”
b) “40-100µg resin/ml there occurred marked inhibition of cell division.
c) “large total dose, Hamsters, 25-300mg/kg ...“oedema, phocomelia,omphalocoele,

spina bifida, exencephaly, multiple malformations and myelocoele. This is a
formidable list.”

d) “It is to this anti-mitotic action that the authors attribute the embryotoxic action of
cannabis.”

e) “By such criteria resin or extract of cannabis would be forbidden to women during
the first three months of pregnancy.” 337

Indeed, even from the other side of the world I have heard many exceedingly adverse reports
from US states in which cannabis has been legalized including Colorado, Washington,
Oregon, Florida and California 231,233,338-342. Taken together the above evidence suggests that
these negative reports stem directly from the now known actions of cannabis and
cannabinoids, and are by no means incidental epiphenomena somehow related to social
constructs surrounding cannabis use or the product forms, dosages, or routes of administration
involved 343.

Cannabis that contains increasingly high levels of THC is now widely available,
particularly in the jurisdictions where the use of cannabis has been legalized. This means
that another major genotoxin, akin to Thalidomide, is being unleashed on the USA and
the world. This is clearly a very grave, and. indeed, an entirely preventable occurrence.

Dr Frances Kelsey of FDA is said to have the public servant based at FDA who saved
American from the thalidomide scandal which devastated so many other English-speaking
nations including my own 344. This occurred because the genotoxicity section of the file
application with FDA was blank. It was blank because thalidomide tested positive in various
white rabbit and guinea pig assays. It is these same tests which cannabis is known to have
failed 88,337,345,346. Dr Kelsey’s photograph has been published in the medical press with
President Kennedy for her service to the nation (Figure 5) 344. The challenge to FDA at this
time seems whether Science can triumph over agenda driven populism, its primary vehicle,
the mass media, and its primary proximate driver the burgeoning cannabis industry. Since
FDA is the Federal agency par excellence where Health Science is weighed, commissioned
and thoughtfully considered the challenge in our time would appear to be no less.

Evidence to date does not suggest that major congenital malformations are as common after
prenatal cannabis exposure as they are after prenatal thalidomide exposure. Nevertheless the
qualitative similarities remain and indeed are prominent. It is yet to be seen whether the rate
of congenital anomalies after cannabis are quantitatively as common: epidemiological studies
in a high potency era have not been undertaken; and even the birth defects rates from most
birth defects registers in western nations including that held by CDC, Atlanta appear to be
seriously out of date at the time of writing. Moreover the non-linear dose response curve in
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many cannabis genotoxicity studies which includes a sharp knee bend upwards beyond a
certain threshold level which suggests that we could well be in for a very unpleasant
quantitative surprise. At the time of writing this remains to be formally determined.

Dr Bertha Madras, Professor of Addiction Psychiatry at Harvard Medical School has recently
argued against re-scheduling of cannabis. Her comments include the following:

“Why do nations schedule drugs? ...... Nations schedule psychoactive drugs because
we revere this three-pound organ (of our brain) differently than any other part of our
body. It is the repository of our humanity. It is the place that enables us to write
poetry and to do theater, to conjure up calculus and send rockets to Pluto three billion
miles away, and to create I Phones and 3 D computer printing. And that is the
magnificence of the human brain. Drugs can influence (the brain) adversely. So, this
is not a war on drugs. This is a defense of our brains, the ultimate source of our
humanity” 347.

I look forward to seeing the comments that you post concerning the reasons why the
classification for marijuana should not be changed and that, indeed, the public should be
alerted to the very harmful effects of marijuana with THC, especially in light of the wide
range of marijuana’s harmful effects and the high potency of THC in today’s marijuana and in
light of the idiosyncratic effects of marijuana of even low doses of THC and owing to the
certain risk of harm to progeny and babies born to users of marijuana.

Please feel free to call on me if you would like further information concerning the research to
which I have referred herein.

Yours sincerely,

Professor Dr. Stuart Reece,
Edith Cowan University and
University of Western Australia,
Perth,
Western Australia,
Australia, 6009.
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Figure Captions

Figure 1: Cannabis Use Rates in Pregnancy in California and Gastroschisis Rates USA, by
Age Groups

Figure 2: Close Parallel between the Collapse of Mitochondrial NAD+ Dependent
Respiration in Complexes I, II and IV and the Decline of NAD+ with Physiological Aging.

Figure 3: Sperm swimming demonstrating how mitochondria are wrapped around the central
axel of the flagellum to provide local energy where it is needed.

Figure 4: Mitochondria (green) surrounding the mitotic spindle (made of microtubuiles shown
in pink) which carry the chromsomes (blue) at the time of cell division. Photo taken from
NIH laboratories (http://https//visualsonline.cancer.gov/details.cfm?imageid=10708).

Figure 5: Presentation of Dr Frances Kelsey of FDA to President John F Kennedy.
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Over the period 2000-2013 Colorado almost doubled its already high congenital anomaly rate
rising from 4,830 anomalies / 65,429 births (7.4%) to 8,165 / 65,004 (12.6%; Figure 1); the
US mean is 3.1%. Major cardiovascular defects rose 61% (number and rate); microcephaly
rose 96% (from 30 to 60 cases peaking at 72 in 2009); and chromosomal anomalies rose 28%
(from 175 to 225, peaking at 264 in 2010; Figure 2-7). Over the whole period this totals to
87,772 major congenital anomalies from 949,317 live births (9.25%).

The use of cannabis in Colorado can be determined from the SAMHSA National Survey on
Drug Use and Health. A close correlation is noted between major congenital anomaly rates
and rates of cannabis use in Coloradans >12 years (R=0.8825; P=0.000029; Figure 8).
Although data is not strictly comparable across U.S. registries, the Colorado registry is a
passive rather than active case-finding registry and so might be expected to underestimate
anomaly rates. Given the Colorado birth rate remained almost constant over the period 2000-
2013, rising only 3.6%, a simple way to quantitate historical trends is to simply project
forwards the historical anomaly rate and compare it to the rise in birth numbers. However
rather than remaining relatively stable in line with population births, selected defects (left
hand column Table 1) have risen several times more than the birth rate (right hand column).

Colorado had an average of 67,808 births over the period 2000-2013 and experienced a total
of 87,772 birth defects, 20,152 more than would have been predicted using 2000 rates. Given
the association between cannabis use and birth defects and the plausible biological
mechanisms, cannabis may be a major factor contributing to birth congenital morbidity in
Colorado. If we accept this and apply the “Colorado effect” to the over 3,945,875 births in
USA in 2016 we calculate an excess of 83,762 major congenital anomalies annually
nationwide if cannabis use rises in the US to the level that it was in Colorado in 2013.

In reality both cannabis use and cannabis concentration is rising across USA following
legalization which further implies that the above calculations represent significant
underestimations 159,160. This CRCSN data series terminates in 2013 prior to full legalization
in 2014. Moreover parents of children harbouring severe anomalies may frequently elect for
termination, which will again underestimate numbers of abnormal live births.

In California 7% of all pregnant mothers were recently shown to test positive for cannabis
exposure, including almost 25% of teenage mothers in 2015 so cannabinoids clearly
constitute a significant population-wide teratological exposure 161. This is particularly
relevant to cannabis genotoxicity as many studies show a dramatic up-tick in genotoxic effect
in the dose-response curve for both tetrahydrocannabinol and cannabidiol above a certain
threshold dose as higher, sedating levels are reached 132,136,162-166. Cannabis is usually used
amongst humans for its sedative effects.

Other examples of high congenital anomaly rates accompanying increased cannabis use
include North Carolina 167-169, Mexico 170-175, Northern Canada 111,176-178, New Zealand and
the Nimbin area in Australia 179-182.

The above data leave open the distinct possibility that the rate of congenital anomalies from
significant prenatal paternal or maternal cannabis exposure may become substantial.
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With over 1,000 trials listed on clincaltrials.gov the chance of a type I experimental error for
cannabinoid therapeutics and a falsely positive trial finding is at least 25/1,000 trials at the 5%
level.

The major anomaly rate is just the “tip of the iceberg” of the often subtle neurobehavioral
teratology of Foetal Cannabinoid Syndrome (FCS) following antenatal cannabinoid exposure
characterized by attention, learning, behavioral and social deficits which in the longer term
impose significant educational, other addiction and welfare costs - and is clearly more
common 121,183-225. Foetal Alcohol Syndrome (FAS) is known to be epigenetically mediated
226-251 and foetal alcohol is known to act via CB1R’s 186,203,206-208,210,216,252-259. Cannabis has
significant and heritable epigenetic imprints in neural, immune and germ cell (sperm) tissues
20,117,119,120,122,260-262, and epigenomic disruption has been implicated in FCS 241. CB1R-
mediated disruption by disinhibition of the normal gamma and theta oscillatory rhythms of
the forebrain which underpin thinking, learning and sanity have been implicated both in adult
psychiatric disease and the neurodevelopmental aspects of FCS 211.

All of this implies that in addition to usually short-term therapy-oriented clinical trials, longer
term studies and careful twenty-first century next generation studies will be required to
carefully review inter-related genotoxic, teratologic, epigenetic, transcriptomic, metabolomic,
epitranscriptomic and long term cardiovascular outcomes which appears to have been largely
overlooked in extant studies – effects which would appear rather to have taken Coloradans by
surprise. Congenital registry data also needs to be open and transparent which it presently is
not. We note that cannabidiol is now solidly implicated in genotoxicity 134,263-269.
Governments are duty-bound to carefully weigh and balance the implications of their social
policies; lest like Colorado, we too unwittingly create a “Children with Special Needs
Program” 158.

These data also directly imply that young adults, as the very group which most consumes
cannabis 160,161,270-273 is the very group which most requires protection from its reproductive,
genotoxic and teratogenic effects.

Yours sincerely,

Assoc. Prof. Dr. Stuart Reece.
University of Western Australia and
Edith Cowan University,
Perth,
Australia.
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Table 1.:

Cumulative Data for Colorado

Birth Defects 2000-2013 *

Anomaly
Cumulative

Total
2000-2013

Projected
Total from

Baseline

Excess Above
Baseline

% Change
2000-2013

Times (x)
Increase

Relative to
Births

Births 949,317 916,006 33,311 3.6% 1.00

Major Congenital
Defects

87,772 67,620 20,152 29.8% 8.20

Major CVS 19,288 14,028 5,260 37.5% 10.31
VSD 4,447 3,794 653 17.2% 4.73
ASD-Secundum 9,833 4,970 4,863 97.8% 26.91
Microcephaly 761 420 341 81.2% 22.33
Chromosomal 3,134 2,450 684 27.9% 7.68

* - From Reference (4)

Health and Other Legislation Amendment Bill 2018 Submission No 033



Click here type footer text. 5

Figure 1.
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Figures 2, 3.
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Figures 4, 5.
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Figures 6. 7.
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Figure 8
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psychotropic properties which are characteristic for THC. 
CBD and CBDV are antiepileptic, anticonvulsant, and 
antipsychotic (Fernández-Ruiz et al. 2013; Hill et al. 2012; 
Rosenberg et al. 2015; Ujvary and Hanus 2016); further-
more, it was postulated that the former compound prevents 
inflammation (Borrelli et al. 2009) and may act as an anti-
carcinogen (Aviello et al. 2012; Massi et al. 2013). Fig-
ure 1a–c depict the structure of the compounds.

It was repeatedly stressed that the use of CBD is safe 
and that it is well-tolerated by humans (Bergamaschi et al. 
2011; Iffland and Grotenhermen 2017). At present, a large 
number of extracts and oils of cannabis plants which contain 
CBD and CBDV and low levels of THC are marketed in 
European countries and also in the US, and several clinical 
trials concerning their health effects are in progress (Fasinu 
et al. 2016). The preparations are mainly sold via the internet 
(64%) and in hemp shops (17%), but also in drugstores and 
pharmacies (Borchardt 2018). The sales of these products 
are booming at present. According to Forbes Magazine, the 
market increased by 700% in recent years (http://www.forbe 
s.com) and it is stated in a report of the market intelligence 
of the Hemp Business Journal that sales will exceed 2.1 Bil-
lion USD in 2020 (NSE 2018).

Since CBD and CBDV are natural substances, the cur-
rent legislation does not foresee toxicological testing which 
is obligatory for pharmaceutical drugs and no potential long-
term effects such as induction of cancer, infertility, and mal-
formations in the offspring have been investigated. These lat-
ter effects may be due to damage to the genetic material, but 
only few studies which date back to the 1980s were realized. 
Zimmerman and Raj (1980) tested CBD in mice and found 
evidence for induction of micronuclei (MNi) in bone marrow 
cells of mice, which are formed as a consequence of struc-
tural and numerical chromosomal aberrations in bone marrow 
cells. Furthermore, the same authors reported increased rates 
of chromosomal aberrations (CA) in the same target tissue by 
CBD (Zimmerman and Raj 1980).

The aim of the present study was to investigate if CBD 
and CBDV cause damage to the genetic material in human-
derived cells, under conditions which reflect the situation in 
users. We investigated the effects of these compounds in single 
cell gel electrophoresis (SCGE) assays which are based on 
the measurement of DNA migration in an electric field and 
reflect single and double strand breaks, as well as apurinic sites 
(Azqueta and Collins 2013). The SCGE technique is among 
the most widely used methods in genetic toxicology (Neri 
et al. 2015). The compounds were tested in a human-derived 
hepatoma cell line (HepG2) which reflects the metabolism of 
xenobiotics better than other cell lines currently used (Knas-
muller et al. 1998). Since CBD and CBDV preparations are 
mainly consumed orally, additional experiments were con-
ducted with TR146 cells which are derived from the buccal 
epithelium (Rupniak et al. 1985). To elucidate if (repairable) 
DNA damage (which is detected in the SCGE experiments) 
leads to formation of persisting chromosomal mutations, MN 
cytome experiments were performed, to monitor induction 
of MNi, which reflect structural and numerical chromosomal 
aberrations and other nuclear anomalies (Nbuds and NPBs), 
which are formed as a consequence of gene amplifications and 
dicentric chromosomes (Fenech 2007).

To characterize the molecular mechanisms, by which the 
compounds cause genetic instability, additional experiments 
were performed which enable the assessment of formation of 
oxidized purines and pyrimidines by use of a modified proto-
col of the SCGE assay with lesion-specific enzymes according 
to the protocol of Collins and Dušinská (2002). Finally, a series 
of experiments with liver homogenate (S9 mix) was conducted 
to find out if drug-metabolizing enzymes are involved in the 
activation of the compounds.

Fig. 1  Chemical structure of the test compounds. a ∆9-THC (CAS 
Nr. 1972-08-3), b CBD (CAS Nr. 13956-29-1), c CBDV (CAS Nr. 
24274-48-4) is a propyl derivative of CBD
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Materials and methods

Chemicals

Low melting point agarose (LMPA) and normal melting 
point agarose (NMPA) were obtained from Gibco (Paisley, 
UK). Inorganic salts, dimethyl sulfoxide (DMSO), metha-
nol, propidium iodide, hydrogen peroxide, triton X-100, 
trizma base, bovine serum albumine (BSA), cyclophos-
phamide, cytochalasin B, Dulbecco’s phosphate-buffered 
saline (DPBS), fetal calf serum (FCS), trypsin–EDTA, 
 Na2-EDTA, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic 
acid (HEPES), trypan blue and cyclophosphamide (CP) were 
purchased from Sigma-Aldrich (Steinheim, Germany).

Test compounds

Cannabidiol (CBD, CAS 13956-29-1, purity 99.95%) was 
obtained from LGC Standards GmbH (Germany) and can-
nabidivarin (CBDV, CAS 24274-48-4, purity 99.80%) from 
Sigma-Aldrich (Milan, Italy). Both compounds were dis-
solved in methanol.

Cultivation of cell lines (HepG2 and TR146)

The human hepatoma cell line (HepG2) was provided by F. 
Darroudi (Department of Toxicogenetics, Leiden University 
Medical Centre, the Netherlands). The cells were grown in 
Eagle’s Minimal Essential Medium (EMEM, Sigma-Aldrich, 
Steinheim, Germany) supplemented with 1.0 mM sodium 
pyruvate (MNP medium) and 10% FCS. The fifth to eighth 
passages from stock cultures (in liquid nitrogen) were used 
for the SCGE and MN experiments.

The human cell line TR146 which is derived from buccal 
epithelial tissue (Rupniak et al. 1985) was obtained from J. 
G. Rheinwald (Dermatology Institute of Boston, MA USA). 
The cells were cultivated in Dulbecco’s modified Eagle 
Medium (DMEM, Sigma-Aldrich, Steinheim, Germany) 
with 10% FCS. The cells were stored in liquid nitrogen. The 
fourth to the sixth passage were used for the genotoxicity 
experiments.

Both cell lines were cultivated under standard conditions 
(37 °C, humidified atmosphere, 5%  CO2). The media were 
changed every 2–3 days. When the cultures had reached con-
fluency, the cells were washed with DPBS, detached with 
trypsin/EDTA, centrifuged and sub-cultured.

Measurements of cytotoxic effects

The viability of the cells was determined with a  CASY® 
cell counter (Schärfe-System GmbH, Reutlingen, Germany). 

This method is based on the determination of electric poten-
tial differences (Lindl et al. 2005). Briefly, cells (2.0 × 105 
cells/well) were seeded in 24-wells plates (Becton, Dick-
inson and Company, NJ, USA) in media which contained 
different concentrations of CBD (0.22–162 µM) and CBDV 
(0.66–162 µM) for 3 h or 24 h. In all experiments, solvent 
controls and positive controls were included. The cells were 
detached with trypsin–EDTA, centrifuged (200g, 5 min, 
21 °C) and suspended in 1.0 mL medium. 50.0 µL of these 
suspensions were transferred to CASY-cups (OLS OMNI 
Life Science GmbH & Co. KG, Bremen, Germany). For each 
experimental point, two independent experiments were per-
formed and means ± standard deviations were calculated. 
Additionally, we tested the viability of the cells after expo-
sure to the test compounds with the trypan blue exclusion 
technique (Lindl and Bauer 1994).

Single cell gel electrophoresis (SCGE) assays 
(standard conditions)

The experiments were conducted according to the protocol 
of Tice et al. (2000) under alkaline conditions. Only cultures 
with a viability ≥ 80% were evaluated in SCGE assays.

The indicator cells (2.0 × 105 cells/well) were transferred 
into 24-well plates which contained 1.0 mL medium with dif-
ferent concentrations of CBD and CBDV. The cells (HepG2) 
were exposed to the test compounds for 3 h and 24 h (3 h: 
dose range 0.66–54, 24 h: dose range 0.22–18 µM). TR146 
cells were treated with the cannabinoids for 3 h (dose range 
2.00–54 µM). In all experiments, solvent controls (methanol) 
and positive controls  (H2O2, 50 µM) were included. The pel-
lets were resuspended in low melting point agarose (0.5% 
LMPA). Subsequently, the cells were spread on pre-coated 
agarose slides (1.5% NMPA) and lysed in the dark at 4 °C 
for at least 60 min. After 30 min of unwinding under alka-
line conditions (pH > 13), electrophoresis was carried out for 
30 min (300 mA, 1.0 V/cm, at 4 °C); neutralization was per-
formed twice for 8 min. Air-dried slides were stained with 
propidium iodide (10 µg/mL). Subsequently, the percentage 
of DNA in the tails was measured by use of an image analy-
sis system (Comet IV, Perceptive Instruments Ltd., Burry 
St. Edmunds’, UK). For each experimental point, two slides 
were prepared and 50 nuclei were evaluated randomly on 
each slide. Two independent experiments were performed.

In experiments with rat liver homogenate (S9), 10 µL S9 
mix was added to the inoculation mix (final protein con-
centration 30 mg/mL). MUTAZYME™ rat S9 mix (10%) 
was purchased from TrinovaBiochem GmbH (Giessen, Ger-
many). MUTAZYME™ consists of Aroclor 1254-induced 
male Sprague Dawley rat liver S9 which was lyophilized 
with NADP, d-glucose-6-phosphate,  MgCl2/KCl in pH 7.4 
sodium phosphate buffer. The mixtures were incubated for 
3 h (37 °C; shaking 250 rpm). Subsequently, the cells were 
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washed and processed as described above. Two independent 
experiments were performed. For each experimental point, 
two slides were prepared and 50 nuclei were evaluated ran-
domly from each slide.

Single cell gel electrophoresis (SCGE) assays 
with lesion‑specific enzymes

The impact of the drugs on the formation of oxidized DNA 
bases was monitored in additional experiments with lesion-
specific enzymes. Formamidopyrimidine DNA glycosylase 
(FPG) and endonuclease III (ENDO III) were purchased 
from Sigma-Aldrich (Steinheim, Germany). To define the 
optimal concentrations of the enzymes, calibration experi-
ments were carried out before the main experiments [for 
details see Collins et al. (1997), data not shown].

The cells (HepG2) were exposed to the test compounds 
as described above. The experiments with lesion-specific 
enzymes were conducted according to the protocol of Col-
lins and Dusinska (2002).

After lysis, the slides were washed for 8 min twice with 
enzyme reaction buffer (40 mM HEPES, 0.1 M KCl, 0.5 mM 
 Na2EDTA, 0.2 mg/mL BSA, pH 8.0). Subsequently, the 
nuclei were treated either with 50 µL of the enzyme solu-
tions or with the enzyme buffers. The incubation time for 
experiments with FPG was 30 min and for Endo III 45 min 
at 37 °C, respectively. After the treatment, electrophoresis 
was carried out under standard conditions (30 min, 300 mA, 
1.0 V/cm, at 4 °C, pH > 13). After electrophoresis, the slides 
were processed and evaluated as described above. Two inde-
pendent experiments were performed. For each experimental 
point, two cultures were set up. From each culture, two slides 
were prepared and 50 cells were evaluated from each slide.

Cytokinesis‑block micronucleus (CBMN) assays 
with HepG2

The experiments were conducted as described by Koller et al. 
(2014). Briefly, 5.0 × 105 cells/well were seeded in 6-well 
plates with 3.0 mL medium and allowed to attach overnight. 
Subsequently, the medium was removed after washing with 
DPBS. The cells were treated with different concentrations 
(0.07–2 µM) of the test compounds in serum-free medium 
for 3 h. Cyclophosphamide (final concentration 500 µg/mL) 
was used as a positive control. After treatment of the cells 
with the drugs for 3 h, they were washed with PBS. Subse-
quently, they were incubated with cytochalasin B (3.0 µg/mL) 
to block cytokinesis and DMEM (with 10% FCS) for 27–28 h. 
Then, the cells were washed, trypsinized and harvested. Slides 
were prepared with the cyto-centrifugation method (Fenech 
2007). After drying, they were stained with Diff Quick (Dade 
Behring, Deerfield, IL, USA) and fixed with Entellan (Sigma-
Aldrich, Steinheim, Germany).

Per experimental point, two cultures were made. Four 
slides were prepared and 2000 cells were evaluated. Different 
endpoints were scored namely, mono-nucleated, binucleated 
(BN) and multi-nucleated cells as well as the rates of binucle-
ated cells with MN (BN–MN), the total number of MN in 
binucleated cells (MNi), nuclear buds (Nbuds), and nucleo-
plasmatic bridges (NPBs). The cytokinesis-block prolifera-
tion indices (CBPI) were calculated with 500 cells according 
to the formula CBPI = [M1 + 2M2 + 3(M3 + M4)]/N (N is the 
total number of scored cells), M1–M4 refers to the number of 
cells with one to four nuclei (OECD 2016). The toxicity of the 
compounds was indirectly assessed by the assumption that a 
CBPI of 1.0 corresponds to 100% cytotoxicity (OECD 2016). 
Five concentrations of each drug were used to determine the 
CBPI values. Two independent experiments were performed; 
per experimental point, four slides were prepared and 2000 
cells were evaluated. In agreement with OECD guideline #487 
(OECD 2016), only doses causing less than 60% cytotoxicity 
were analyzed with regard to formation of nuclear anoma-
lies. Early necrotic cells, characterized by pale cytoplasm and 
presence of many vacuoles, and late necrotic cells, identified 
by loss of cytoplasm and damaged nuclear membranes, were 
scored according to the protocol of Fenech (2007). Apoptotic 
cells were identified morphologically by changes in the chro-
matin structure and by nuclear fragmentation (Fenech 2007).

Statistical analyses

All results were analyzed with the GraphPad Prism 5 soft-
ware system (LaJolla, CA, USA). The data from the SCGE 
experiments and from the MN assays are presented as 
means ± SD. The results of CBMN and SCGE assays (under 
standard conditions and after treatment with lesion-specific 
enzymes) were analyzed by one-way ANOVA followed by 
Dunnett’s multiple comparisons test. The t test was used for 
experiments with/without S9 in TR146 cells to calculate the 
statistical differences between the groups after the treatment 
of the cells with both compounds. Differences were consid-
ered as significant when the p values were ≤ 0.05.

All statistical calculations are based on comparisons 
between results which were obtained with cells which had 
been treated with the test compounds and results which were 
obtained with corresponding solvent controls.

Results

Cytotoxic effects of test compounds

Since cytotoxic effects may lead to false positive results 
in SCGE assays (Henderson et al. 1998), several experi-
mental series were conducted with HepG2 and TR146 
cells, in which the indicator cells were exposed to different 
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concentrations of CBD and CBDV. The results of these 
experiments are summarized in Figures S1 and S2 (supple-
mentary information). It can be seen that the viability of 
the HepG2 was not affected when the cells were exposed to 
concentrations ≤ 54 µM for 3 h; the highest dose (162 µM) 
caused a clear effect, and the viability of the cells decreased 
by approximately 50%. When the treatment time was 
extended to 24 h, a decline of viable cells was also seen 
with 54 µM (Fig. S1A–D). The impact of the compounds 
on the viability of TR146 cells is shown in Figures S2A-B.

The vitality of the HepG2 cells in SCGE experiments 
was also determined with the trypan blue exclusion tech-
nique after treatment with 54 µM of CBD and CBDV (the 
highest dose tested in SCGE experiments) and was 90% ± 8 
and 95% ± 4, respectively. The corresponding values for 
TR-146 cells are 91% ± 5 and 87% ± 4 (numbers indicate 
values obtained with three cultures ± standard deviations). 
Since misleading/false positives may occur in SCGE experi-
ments only when the viability of the cells declines below 
80% (Henderson et al. 1998), it can be excluded that the 
results which we obtained in the SCGE tests are due to acute 
toxic effects.

SCGE assays with HepG2 and TR146 (standard 
conditions)

The results of SCGE experiments with the cannabinoids are 
summarized in Figs. 2, 3 and 4. Results of individual experi-
ments can be found in supplementary tables SI 1A-B. Since 
it is known that the genotoxic response of promutagens in 
HepG2 may increase after extended treatment (Natarajan 
and Darroudi 1991), two exposure periods (3 h and 24 h) 
were tested. Both drugs caused DNA damage in both cell 
types (HepG2 and TR146). In the liver-derived cells, signifi-
cant induction of damage was seen with both compounds at 
concentrations ≥ 6.0 µM after 3 h (Fig. 2a, b). When the cells 
were treated for 24 h, clear damage was observed with the 
lower concentrations (≥ 2.0 µM) (Fig. 2c, d).

Also with TR146 cells, which are derived from the buccal 
cavity, positive findings were obtained under identical condi-
tions, i.e., induction of comets was detected with both drugs 
at concentrations ≥ 6.0 µM after 3 h (Fig. 3a, b).

It is notable that CBD was more active than its propyl 
analogue (CBDV) in both cell lines, when the cells were 
exposed for 3 h, i.e., the extent of DNA damage which was 
seen with the former compound under identical conditions 
was approximately threefold higher.

Fig. 2  a, b Induction of DNA 
damage by CBD and CBDV in 
a human-derived liver cell line 
(HepG2). The cells were treated 
with different concentrations of 
the test compounds for 3 and 
24 h. Methanol was used as a 
solvent control [for 3 h CBD: 
1.70% (v/v) and CBDV: 1.55% 
(v/v); for 24 h CBD: 0.56% 
(v/v) for CBDV: 0.52% (v/v)]. 
Hydrogen peroxide (50 µM) 
was used as a positive control 
(the cells were treated for 
5 min on ice) and induced clear 
positive effects (26.57 ± 3.64% 
DNA in tail). Bars indicate 
means ± SD of results obtained 
with two parallel cultures per 
experiment (from each culture 
two slides were made and 50 
cells were evaluated per slide). 
Stars indicate statistical signifi-
cance (p ≤ 0.05, ANOVA). All 
statistical calculations are based 
on comparisons between results 
which were obtained with cells 
which had been treated with 
the test compounds and results 
which were obtained with cor-
responding solvent controls
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To find out if the compounds are converted to muta-
genic metabolites by liver enzymes, an additional experi-
mental series was realized, in which S9 mix (which con-
tains active phase I enzymes) was added to the incubation 
during the treatment of TR146 cells with the cannabinoids. 
The results are shown in Fig. 4a, b. Addition of the enzyme 
homogenate caused induction of DNA damage in TR146 
cells, but no such effect was seen when the liver enzymes 
were inactivated by heating.

SCGE assays with lesion‑specific enzymes 
with HepG2

To elucidate if the drugs cause oxidative damage of DNA 
bases, experiments were conducted with lesion-specific 
enzymes (FPG and ENDO III). The results are summarized 
in Figs. 5a, b and 6a, b.

It is evident that CBD and CBDV cause oxidation of 
purines and pyrimidines. Even with the lowest levels 

Fig. 3  a, b Induction of DNA damage by CBD and CBDV in a 
human-derived buccal cell line (TR146). The cells were treated with 
different concentrations of the test compounds for 3 h. Methanol was 
used as solvent control [CBD: 1.70% (v/v) and CBDV: 1.55% (v/v)]. 
Hydrogen peroxide (50 µM) was used as a positive control (the cells 
were treated for 5  min on ice). The peroxide induced clear positive 
effects (20.12 ± 1.84% DNA in tail). Bars indicate means ± SD of 
results obtained with two parallel cultures per experiment (from each 
culture two slides were made and 50 cells were evaluated per slide). 
Stars indicate statistical significance (p ≤ 0.05, ANOVA). All statis-
tical calculations are based on comparisons between results which 
were obtained with cells which had been treated with the test com-
pounds and results which were obtained with corresponding solvent 
controls

Fig. 4  a, b Impact of liver enzyme homogenate on the DNA-dam-
aging activity of CBD and CBDV in TR146 cells. The cells were 
treated with 2.0  µM of the cannabinoids and in parallel with liver 
enzyme homogenate (for details see “Materials and methods”). Bars 
indicate means ± SD of results obtained with two parallel cultures 
per experiment (from each culture two slides were made and 50 
cells were evaluated per slide). Stars indicate statistical significance 
(p ≤ 0.05, Two-tailed paired t test). All statistical calculations are 
based on comparisons between results which were obtained with cells 
which had been treated with the test compounds and results which 
were obtained with corresponding solvent controls
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(0.66 µM), significant induction of comet formation was 
observed.

Cytokinesis‑block micronucleus (CBMN) assays 
with HepG2

To find out if treatment of human liver-derived cells leads 
to formation of MNi, which reflect structural and numeri-
cal chromosomal aberrations, cytome MN experiments were 
conducted with HepG2 cells. The results are summarized in 
Table 1. Data from individual experiments can be found in 
supplementary tables SI 2A-B.

Both compounds caused induction of MNi at low con-
centrations (≥ 0.22 µM). Additionally, a significant increase 
of other nuclear anomalies (Nbuds and NPBs), as well 
as induction of cell death (necrosis and apoptosis) was 
observed after treatment with both drugs.

Discussion

The results of the present study show that CBD and CBDV 
cause formation of comets (which reflect single and double 
strand breaks and apurinic sites), oxidation of DNA bases 
and induction of MN (which are formed as a consequence of 
structural and numerical chromosomal aberrations).

The effects were seen at concentrations which are in the 
range of the levels also found in the blood of users. The 
highest concentrations of CBD detected after smoking were 
between 0.25 and 2.18 µM in plasma (Haney et al. 2016; 
Ohlsson et al. 1986). Cells in the oral cavity of users who 
consume oils, sprays or smoke dried plant material may 
be exposed to much higher doses, but no experimental 
data are currently available according to our knowledge. 
For CBDV, exposure data from humans are missing. As 
shown in Table 1, we found significant induction of MN 

Fig. 5  a, b Formation of oxidized purines in HepG2 cells by CBD 
and CBDV. The cells were exposed to the test compounds for 3  h. 
Subsequently, the nuclei were isolated after lysis and treated with 
FPG or with the corresponding buffers before electrophoresis for 
30 min. Bars indicate means ± SD of results obtained with two cul-
tures per experimental point. From each culture, two slides were 
made and 50 cells were evaluated per slide. Stars indicate statisti-
cal significance (p ≤ 0.05, ANOVA). All statistical calculations are 
based on comparisons between results which were obtained with cells 
which had been treated with the test compounds and results which 
were obtained with corresponding solvent controls

Fig. 6  a, b Formation of oxidized pyrimidines in HepG2 cells by 
CBD and CBDV. The cells were exposed to the test compounds for 
3 h. Subsequently, the nuclei were isolated after lysis and treated with 
ENDO III or with the corresponding buffers before electrophoresis 
for 45  min. Bars indicate means ± SD of results obtained with two 
cultures per experimental point. From each culture, two slides were 
made and 50 cells were evaluated per slide. Stars indicate statisti-
cal significance (p ≤ 0.05, ANOVA). All statistical calculations are 
based on comparisons between results which were obtained with cells 
which had been treated with the test compounds and results which 
were obtained with corresponding solvent controls
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with both compounds after treatment of the cells with con-
centrations ≥ 0.22 µM in the present study. Furthermore, 
increased rates of NBuds and NPBs, which are formed as 
a consequence of gene amplification and dicentric chromo-
somes (Fenech 2007), were also detected under identical 
conditions.

As described in the introduction, results of older studies 
are available (when no CBD-containing preparations were 
sold on the market). They show that CBD causes induc-
tion of MN and CA in bone marrow of mice (Zimmerman 
and Raj 1980), while no positive results were obtained 
in unscheduled DNA synthesis (UDS) experiments with 
fibroblasts in vitro (Zimmerman et al. 1978). MN induction 
was found in three independent experimental series after 
i.p. administration of CBD; the test was in partial agree-
ment with the U.S. EPA guidelines (Mavournin et al. 1990; 
OECD 2016), i.e., several doses were tested, five animals 
were used per group, a sufficient number of cells was evalu-
ated and positive/negative controls were included. However, 
the impact of the drug on erythropoiesis, which may lead 
to false results and OECD #474 (Tweats et al. 2007) was 
not taken into account. The evidence for induction of MN 
is supported by results of chromosomal analyses of meta-
phase cells from the bone marrow which showed that i.p. 

administration of 10 mg/kg caused a sevenfold increase over 
the background (Zimmerman and Raj 1980).

The only SCGE result with CBD was published by 
Aviello et al. (2012) who conducted a single dose experi-
ment with colon-derived (CaCo2) cells. The authors found 
no induction of DNA damage when the cells were treated 
with 10 µM CBD for 24 h. We did not find any results of 
mutagenicity studies with CBDV in the literature, while  sev-
eral investigations were conducted with THC which is struc-
turally related to both compounds (Fig. 1). Consistently 
negative results were obtained in microbial experiments and 
in in vitro studies with mammalian cells and human leuko-
cytes (Neu et al. 1970; Stenchever and Allen 1972; Stoeckel 
et al. 1975; Zimmerman et al. 1978), while studies done with 
laboratory rodents yielded controversial findings (Stoeckel 
et al. 1975; Van Went 1978). In a human study, clear induc-
tion of chromosomal aberrations was found in lymphocytes 
of individuals who consumed the alkaloid orally (Nichols 
et al. 1974).

The results of experiments with lesion-specific enzymes 
(Figs. 5a, b, 6a, b) show that both compounds cause oxida-
tive damage of purines and pyrimidines. In this context, it 
is notable that pro- as well as antioxidant effects of CBD 
have been described. For example, the neuroprotective 

Table 1  Impact of the two cannabinoids on MN formation and on the rates of various nuclear aberrations in HepG2 cells

CBPI cytokinesis-block proliferation indices, CT cytostasis (%), HepG2 cells were treated with different concentrations of the test compounds 
for 3 h. Numbers represent results (means ± SD) obtained in two independent experiments, and in each experiment, two cultures were made 
per experimental point. Four slides were prepared and 2000 cells were evaluated. All statistical calculations are based on comparisons between 
results which were obtained with cells which had been treated with the test compounds and results which were obtained with corresponding sol-
vent controls.
BN–MNi binucleated cells with micronuclei, MNi micronuclei, Nbuds nuclear buds, NPBs nucleoplasmatic bridges, Neg. Ctrl cells cultivated in 
medium, SC solvent control, Pos. Ctrl cyclophosphamide (500 µg/ml)
*Significant differences from solvent control values (Dunnett test, p ≤ 0.05)
a Number of binucleated cells with MN
b Total number of MN from binucleated cells
c Methanol was used as solvent control [0.06% (v/v) in experiments with CBD and 0.05% (v/v) in experiments with CBDV]

Compounds Concentra-
tions (µM)

CPBI CT BN-MNa MNib Nbuds NPBs Necrosis Apoptosis
Mean ± SD % Mean 

(‰) ± SD
Mean 
(‰) ± SD

Mean 
(‰) ± SD

Mean 
(‰) ± SD

Mean 
(‰) ± SD

Mean 
(‰) ± SD

Neg. Ctrl 0 2.04 ± 0.03 – 5.25 ± 0.35 5.75 ± 0.35 4.75 ± 0.35 3.50 ± 0.71 6.25 ± 0.35 3.00 ± 0.71
CBD 0.07 2.00 ± 0.08 3.92 6.50 ± 1.41 6.50 ± 1.41 16.00 ± 2.12* 5.25 ± 0.35 16.25 ± 1.77* 13.50 ± 0.71*

0.22 1.93 ± 0.04 10.60 21.00 ± 1.41* 31.00 ± 2.12* 25.50 ± 2.83* 8.50 ± 1.41* 21.00 ± 0.70* 25.25 ± 3.18*
0.66 1.83 ± 0.04 20.22 31.25 ± 2.47* 46.25 ± 3.89* 37.25 ± 1.06* 10.00 ± 1.41* 30.75 ± 1.77* 29.00 ± 1.41*
2.00 1.72 ± 0.01 30.76 39.25 ± 3.89* 53.25 ± 2.47* 43.00 ± 2.83* 14.00 ± 0.71* 33.50 ± 2.12* 37.25 ± 1.77*

SCc 1.80 ± 0.00 23.05 5.00 ± 1.41 6.25 ± 0.35 5.50 ± 1.41 3.25 ± 1.06 6.75 ± 1.06 3.00 ± 0.71
CBDV 0.07 1.95 ± 0.05 9.17 6.00 ± 0.71 6.00 ± 0.71 15.25 ± 1.77* 6.00 ± 2.12 15.25 ± 2.47* 13.75 ± 1.77*

0.22 1.93 ± 0.04 10.60 26.00 ± 2.83* 29.75 ± 1.77* 36.25 ± 3.18* 10.00 ± 0.71* 18.50 ± 1.41* 21.75 ± 1.06*
0.66 1.79 ± 0.01 24.03 32.00 ± 0.71* 45.50 ± 1.41* 40.00 ± 2.12* 13.25 ± 1.77* 24.5 ± 1.41* 28.75 ± 3.89*
2.00 1.77 ± 0.03 25.97 41.25 ± 2.47* 51.25 ± 3.89* 45.75 ± 2.47* 16.00 ± 2.12* 34.75 ± 2.47* 30.00 ± 2.83*

SCc 1.81 ± 0.02 22.54 5.00 ± 00 5.75 ± 0.35 5.00 ± 0.71 3.25 ± 0.35 6.25 ± 1.06 3.00 ± 0.71
Pos. Ctrl 500 µg/mL 1.80 ± 0.01 23.54 42.25 ± 5.30* 56.75 ± 1.06* 35.50 ± 1.41* 11.75 ± 1.06* 16.25 ± 1.77* 9.25 ± 3.18
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effects of CBD towards alcohol-induced toxicity were 
attributed to its antioxidant properties (Hamelink et al. 
2005). Protective effects seen in LPS-stimulated mac-
rophages were explained by inhibition of formation of 
pro-inflammatory cytokines, which cause formation of free 
oxygen radicals (Rajan et al. 2016). A molecular explana-
tion for the antioxidant properties of CBD can be found in 
a publication of Borges et al. (2013). On the other hand, it 
was shown that CBD induces oxidative stress via activa-
tion of caspase-8 leading to apoptosis (Wu et al. 2008). 
Furthermore, induction of cyclooxygenase 2 (COX-2) was 
found in Zucker diabetic fatty rats, which leads to for-
mation of pro-inflammatory prostaglandins and reactive 
oxygen species (ROS) (Wheal et al. 2014).

Our results with liver enzyme homogenate (Fig. 4) sug-
gest that drug-metabolizing enzymes (in particular CYPs 
which are contained in the enzyme mix) increase the geno-
toxic properties of CBD and CBDV. It is well-documented, 
that different CYPs (in particular CYP1A1, 1A2 and 3A4) 
catalyze the formation of hydroxyl derivatives of CBD 
(Ujvary and Hanus 2016), but the mutagenic properties of 
these metabolites have not been investigated so far.

The most relevant result of the present investigation is 
the detection of MN induction by CBD and CBDV at low, 
physiologically relevant concentrations. MNi are formed as 
a consequence of chromosomal damage and it is well-docu-
mented, that increased rates in lymphocytes of humans are 
indicative for cancer risks (Bonassi et al. 2007). The results 
of the present experiments and also the findings of Zim-
merman and Raj (1980), who found induction of MN and 
CA in vivo in bone marrow of mice, indicate that CBD is 
a potent mutagen. The International Committee on Harmo-
nized Guidance on Genotoxicity Testing of Pharmaceuticals 
states in a position paper very clearly that “unequivocally 
genotoxic compounds in the absence of other data are pre-
sumed to be trans-species carcinogens, implying a hazard in 
humans. Such compounds need to be subjected to long-term 
carcinogenicity studies” (Muller et al. 1999). Furthermore, 
it should be also explored if sperm abnormalities, which 
may be also caused by genomic instability and were induced 
by CBD in mice (Zimmerman and Zimmerman 1990), are 
due to DNA damage and may lead to infertility of users. 
As mentioned above, no data from long-term carcinogenic-
ity experiments with rodents are available at present. It is 
notable in this context that it was found that the sensitiv-
ity of a combination of positive MN assays with rodents 
and in vitro SCGE assays for the detection of group 1 car-
cinogens (IARC) was found to be 95.6% (Bhagat 2018). In 
regard to the MN data obtained in bone marrow cells, it will 
be relevant to investigate if the drugs induce alterations of 
the erythropoetic system (see above) and also if inhalative 
and oral exposure cause adverse effects. Additional experi-
ments to elucidate the molecular mechanisms by which the 

cannabinoids cause damage of the genetic material would 
also contribute to a better understanding of their possible 
health risks in humans.
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The literature on the association between prenatal illicit drug
use and birth defects is inconsistent. The objective of this study
was to determine the risk of a variety of birth defects with prenatal
illicit drug use. Data were derived from an active, population-
based adverse pregnancy outcome registry. Cases were all infants
and fetuses with any of 54 selected birth defects delivered
during 1986–2002. The prenatal methamphetamine, cocaine, or
marijuana use rates were calculated for each birth defect and
compared to the prenatal use rates among all deliveries. Among all
deliveries, the prenatal use rate was 0.52% for methamphetamine,
0.18% for cocaine, and 0.26% for marijuana. Methamphetamine
rates were significantly higher than expected for 14 (26%) of
the birth defects. Cocaine rates were significantly higher than
expected for 13 (24%) of the birth defects. Marijuana rates were
significantly higher than expected for 21 (39%) of the birth
defects. Increased risk for the three drugs occurred predomi-
nantly among birth defects associated with the central nervous
system, cardiovascular system, oral clefts, and limbs. There was
also increased risk of marijuana use among a variety of birth
defects associated with the gastrointestinal system. Prenatal uses
of methamphetamine, cocaine, and marijuana are all associated
with increased risk of a variety of birth defects. The affected birth
defects are primarily associated with particular organ systems.

It is estimated that hundreds of thousands of women use
illicit drugs during pregnancy each year in the United States
(Hutchins, 1997). Studies have varied widely in the reported
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prevalence of illicit drug use during pregnancy due to differ-
ences in population size, population studied, and study design
(Derauf et al., 2003; Norton-Hawk, 1997). Prenatal illicit drug
use has been associated with preterm delivery; decreased birth
weight, length, and head circumference; and adverse neurobe-
havioral characteristics shortly after birth, such as withdrawal
symptoms (e.g., irritability, tremors, and feeding problems)
(Behnke et al., 2001; Cosden et al., 1997; Holzman & Paneth,
1994; Ostrea et al., 1992; Chouteau et al., 1988; Little et al.,
1988).

Studies that examine the impact of illicit drug use during
pregnancy are often subject to certain limitations (Cosden et al.,
1997; Hutchins, 1997; Norton-Hawk, 1997). Individuals who
use one illicit drug frequently use other illicit drugs. Thus it
is difficult to elicit whether the observed effects are due to a
specific drug. Similarly, woman who use illicit drugs during
pregnancy may also have other adverse health behaviors or
inadequate prenatal care that could account for the observed
outcomes.

Another difficulty is the identification of the illicit drug
exposure. The two main methods for identification of illicit
drug use are through self-report or through toxicology tests,
neither of which is ideal. Individuals might be reluctant to
report illicit drug use because of the negative moral conno-
tations associated with the practice as well as potential legal
ramifications. For the same reasons, individuals may be reluc-
tant to undergo toxicology tests. Furthermore, toxicology tests
only provide information on recent illicit drug use. Since
both methods of identifying illicit drug exposure have limi-
tations and one may not be superior to the other, it was
suggested that both be used together in order to obtain a
more accurate estimate of illicit drug use (Christmas et al.,
1992).

A number of studies investigated whether prenatal illicit
drug use causes birth defects. Various studies reported
that maternal cocaine use increased risk of microcephaly,
cardiac defects, situs inversus, ventricular septal defect,
atrial septal defect, endocardial cushion defect, genitourinary
defects, and gastroschisis (Abe et al., 2003; Ferencz et al.,
1997a, 1997b, 1997c; Battin et al., 1995; Torfs et al., 1994;
Lipshultz et al., 1991; Martin & Edmonds, 1991). Prenatal
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marijuana use was associated with ventricular septal defect,
Ebstein anomaly, gastroschisis, and limb–body wall complex
(Wlliams et al., 2004; Luehr et al., 2002; Ferencz et al.,
1997e; Correa-Villasenor et al., 1994; Torfs et al., 1994).
Maternal methamphetamine or amphetamine use has been
reported to increase risk of cardiac defects, musculoskeletal
defects, and gastroschisis (McElhatton et al., 2000; Torfs
et al., 1994). However, other research observed no association
between birth defects and maternal use of illicit drugs
in general (Frey & Hauser, 2003; Hussain et al., 2002;
Croen et al., 2000; Penman et al., 1998; Li et al., 1995),
cocaine (Kuehl & Loffredo, 2002; Beaty et al., 2001; Behnke
et al., 2001; Gardner et al., 1998; Ferencz et al., 1997d;
Hume et al., 1997; Shaw et al., 1996; Martin & Khoury,
1992; Martin et al., 1992; Adams et al., 1989), marijuana
(Steinberger et al., 2002; Beaty et al., 2001; Ferencz et al.,
1997d; Shaw et al., 1996; Adams et al., 1989), or metham-
phetamine or amphetamine (Shaw et al., 1996; Little et al.,
1988).

Much of the published research on prenatal illicit drug use
and birth defects were case reports, involved a small number
of cases, were not population-based, or focused on only one
or a few particular birth defects. The intent of the current
investigation was to evaluate the relationship between use of
methamphetamine, cocaine, and marijuana during pregnancy
and a variety of birth defects using population-based data from
over 300,000 live births.

METHODS
This retrospective study used data from the Hawaii Birth

Defects Program (HBDP), a statewide, population-based
registry for adverse pregnancy outcomes (National Birth
Defects Prevention Network, 2004). The HBDP includes all
infants and fetuses of any pregnancy outcome (live births, fetal
deaths, and elective terminations) of any gestational age where
the delivery occurred in Hawaii and a reportable birth defect,
neoplasm, congenital infection, or prenatal illicit drug use was
identified between conception and 1 yr after delivery. Trained
HBDP staff collected information on eligible subjects through
review of medical records at all delivery and tertiary care
pediatric hospitals, facilities that perform elective terminations
secondary to prenatal diagnosis of birth defects, genetic coun-
seling centers, cytogenetic laboratories, and all but one of the
prenatal ultrasound facilities in Hawaii. Through this multiple
source system, ascertainment of infants and fetuses diagnosed
with eligible conditions (at least for birth defects, neoplasm,
and congenital infections) is believed to be as complete as
possible because an eligible infant or fetus missed through one
ascertainment source is likely to be identified through another.
However, independent verification of this assertion has not
been documented.

In order to select which medical records to review, the
HBDP provides each health care facility with a list of Interna-

tional Classification of Diseases Ninth Revision (ICD-9) codes
that designate conditions of interest to the HBDP. Included
on this list are the ICD-9 codes for birth defects (mainly
740–759.9) and for noxious influences affecting the fetus via
the placenta or breast milk (760.70–760.79). The first range
of codes was used to identify infants and fetuses with birth
defects, while the latter range of codes was used to identify
illicit drug use during pregnancy.

A diagnosis of illicit drug use during pregnancy was based
on any mention of illicit drug use during pregnancy in the
medical record or a positive toxicology screen for the mother or
infant during or shortly after delivery. In the HBDP database,
for verification of illicit drug use a positive toxicology screen
is considered to be superior to mention in the medical record.
So if an illicit drug has a positive toxicology screen and is
mentioned in the medical record, the HBDP database only
notes that there was a positive toxicology screen. As a result,
there is no way to distinguish those instances where the illicit
drug use was based on both methods from those instances
where the drug use was based solely on a positive toxicology
screen.

Cases for the current investigation consisted of all HBDP
infants and fetuses delivered during 1986–2002 with a report of
prenatal illicit drug use involving methamphetamine, cocaine,
or marijuana or a diagnosis of any of 54 selected birth defects.
The three illicit drugs were chosen because they were the drugs
most commonly reported in prenatal illicit drug use in Hawaii.
The particular birth defects were chosen because they were
(1) relatively common defects, (2) easy to diagnose, and/or
(3) were associated with increased morbidity or mortality.
These 54 birth defects are listed in Tables 1–3. All pregnancy
outcomes (live births, fetal deaths, elective terminations) were
included because in Hawaii a large proportion of fetuses iden-
tified with certain types of birth defects do not result in live
birth (Forrester & Merz, 2004; Forrester et al., 1998).

The rate of prenatal use of methamphetamine, cocaine,
and marijuana was calculated among the population using the
number of live births reported to the Hawaii Department of
Health as a denominator. Fetal deaths and elective termina-
tions were not included in the denominators because it is not
believed that such pregnancy outcomes are accurately reported
to the Department of Health.

The rate of each of the 3 illicit drugs was then calcu-
lated for each of the 54 selected birth defects. A portion of
mothers used two or more of the illicit drugs investigated
during a given pregnancy. These mothers were included in
all of the relevant analyses. For example, if the mother used
methamphetamine and cocaine, the mother was included in
the analysis of methamphetamine and the analysis of cocaine.
However, in an effort to minimize confounding by associated
illicit drugs, the analyses were also performed using those cases
where only one of the illicit drugs was reported to have been
used.

Health and Other Legislation Amendment Bill 2018 Submission No 033



TABLE 1
Rate of Prenatal Methamphetamine Use Among Infants and Fetuses With Selected Birth Defects, Hawaii, 1986–2002

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Anencephaly 118 1 0.85 1.64 0.04–9.29 1 0.85 2.16 0.05–12.28
Spina bifida 144 0 0.00 0.00 0.00–5.01 0 0.00 0.00 0.00–6.62
Encephalocele 63 1 1.59 3.06 0.08–17.70 1 1.59 4.05 0.10–23.39
Holoprosencephaly 38 2 5.26 10.16 1.19–39.30 1 2.63 6.71 0.17–39.72
Hydrocephaly 353 5 1.42 2.73 0.88–6.44 4 1.13 2.89 0.78–7.47
Microcephaly 328 16 4.88 9.41 5.32–16.52 14 4.27 10.89 5.88–18.53
Anophthalmia/microphthalmia 101 6 5.94 11.46 4.11–25.83 3 2.97 7.58 1.54–22.78
Cataract 39 0 0.00 0.00 0.00–19.15 0 0.00 0.00 0.00–25.30
Glaucoma 11 0 0.00 0.00 0.00–76.90 0 0.00 0.00 0.00–101.62
Anotia/microtia 120 3 2.50 4.82 0.98–14.44 3 2.50 6.38 1.30–19.09
Truncus arteriosus 21 0 0.00 0.00 0.00–37.06 0 0.00 0.00 0.00–48.98
Transposition of great arteries 136 4 2.94 5.68 1.53–14.87 4 2.94 7.50 2.01–19.65
Tetralogy of Fallot 123 3 2.44 4.71 0.96–14.08 2 1.63 4.15 0.50–15.30
Single ventricle 28 2 7.14 13.79 1.59–54.67 2 7.14 18.22 2.10–72.24
Ventricular septal defect 1331 27 2.03 3.91 2.57–5.72 16 1.20 3.07 1.75–5.00
Atrial septal defect 686 16 2.33 4.50 2.56–7.36 10 1.46 3.72 1.78–6.88
Endocardial cushion defect 74 2 2.70 5.22 0.62–19.52 2 2.70 6.89 0.82–25.80
Pulmonary valve atresia/stenosis 293 3 1.02 1.98 0.41–5.83 2 0.68 1.74 0.21–6.35
Tricuspid valve atresia/stenosis 53 2 3.77 7.28 0.86–27.64 1 1.89 4.81 0.12–28.00
Ebstein’s anomaly 16 1 6.25 12.06 0.29–77.64 1 6.25 15.94 0.38–102.61
Aortic valve stenosis 38 1 2.63 5.08 0.13–30.06 1 2.63 6.71 0.17–39.72
Hypoplastic left heart syndrome 52 0 0.00 0.00 0.00–14.19 0 0.00 0.00 0.00–18.75
Coarctation of aorta 0 0.00 0.00 0.00–9.73 0 0.00 0.00 0.00–12.86
Interrupted aortic arch 14 0 0.00 0.00 0.00–58.18 0 0.00 0.00 0.00–76.89
Anomalous pulmonary venous return 43 0 0.00 0.00 0.00–17.29 0 0.00 0.00 0.00–22.85
Choanal atresia/stenosis 39 0 0.00 0.00 0.00–19.15 0 0.00 0.00 0.00–25.30
Cleft palate 228 8 3.51 6.77 2.89–13.57 6 2.63 6.71 2.44–14.84
Cleft lip with/without cleft palate 410 10 2.44 4.71 2.24–8.75 5 1.22 3.11 1.01–7.32
Esophageal atresia or tracheoesophageal 69 1 1.45 2.80 0.07–16.11 1 1.45 3.70 0.09–21.29

fistula
Pyloric stenosis 255 4 1.57 3.03 0.82–7.85 2 0.78 2.00 0.24–7.30
Small-intestinal atresia/stenosis 89 3 3.37 6.51 1.32–19.64 2 2.25 5.73 0.68–21.32
Anal, rectal, and large-intestinal 162 3 1.85 3.57 0.73–10.63 2 1.23 3.15 0.38–11.56

atresia/stenosis

(Continued)
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TABLE 1
(Continued)

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Hirschsprung’s disease 69 0 0.00 0.00 0.00–10.60 0 0.00 0.00 0.00–14.01
Biliary atresia 34 0 0.00 0.00 0.00–22.12 0 0.00 0.00 0.00–29.23
Malrotation of intestines 91 0 0.00 0.00 0.00–7.98 0 0.00 0.00 0.00–10.55
Hypospadias and epispadias 856 6 0.70 1.35 0.50–2.96 5 0.58 1.49 0.48–3.49
Renal agenesis or hypoplasia 146 1 0.68 1.32 0.03–7.48 0 0.00 0.00 0.00–6.53
Cystic kidney 144 1 0.69 1.34 0.03–7.59 1 0.69 1.77 0.05–10.03
Obstructive genitourinary defect 455 4 0.88 1.70 0.46–4.37 3 0.66 1.68 0.35–4.95
Bladder exstrophy 9 0 0.00 0.00 0.00–97.78 0 0.00 0.00 0.00–129.21
Persistent cloaca 5 0 0.00 0.00 0.00–210.61 0 0.00 0.00 0.00–278.32
Congenital hip dislocation 312 3 0.96 1.86 0.38–5.47 3 0.96 2.45 0.50–7.23
Polydactyly 568 11 1.94 3.74 1.86–6.74 9 1.58 4.04 1.84–7.73
Syndactyly 276 7 2.54 4.89 1.95–10.22 4 1.45 3.70 1.00–9.57
Reduction deformity of upper limbs 115 3 2.61 5.03 1.02–15.09 0 0.00 0.00 0.00–8.31
Reduction deformity of lower limbs 47 2 4.26 8.21 0.97–31.36 0 0.00 0.00 0.00–20.82
Craniosynostosis 159 0 0.00 0.00 0.00–4.53 0 0.00 0.00 0.00–5.99
Diaphragmatic hernia 78 1 1.28 2.47 0.06–14.20 0 0.00 0.00 0.00–12.35
Omphalocele 90 1 1.11 2.14 0.05–12.26 1 1.11 2.83 0.07–16.20
Gastroschisis 109 1 0.92 1.77 0.04–10.07 1 0.92 2.34 0.06–13.31
Situs inversus 35 2 5.71 11.03 1.29–42.93 2 5.71 14.57 1.70–56.73
Trisomy 21 479 6 1.25 2.42 0.88–5.30 6 1.25 3.19 1.17–7.01
Trisomy 13 62 0 0.00 0.00 0.00–11.83 0 0.00 0.00 0.00–15.64
Trisomy 18 152 1 0.66 1.27 0.03–7.18 1 0.66 1.68 0.04–9.49
Total live births 316,508 1640 0.52 ref 1241 0.39 ref

Note. A delivery with more than one structural birth defect will be included in all relevant categories.
aTotal use = all cases of methamphetamine use. Isolated use = cases of methamphetamine use excluding those cases where cocaine or marijuana were also used.
bRatio of the rate of illicit drug use among birth defect cases to the rate of illicit drug use among all deliveries.
cCI = confidence interval.
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TABLE 2
Rate of Prenatal Cocaine Use Among Infants and Fetuses With Selected Birth Defects, Hawaii, 1986–2002

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Anencephaly 118 0 0.00 0.00 0.00–17.85 0 0.00 0.00 0.00–30.64
Spina bifida 144 0 0.00 0.00 0.00–14.59 0 0.00 0.00 0.00–25.04
Encephalocele 63 0 0.00 0.00 0.00–33.90 0 0.00 0.00 0.00–58.19
Holoprosencephaly 38 0 0.00 0.00 0.00–57.31 0 0.00 0.00 0.00–98.37
Hydrocephaly 353 4 1.13 6.37 1.73–16.46 2 0.57 5.47 0.66–19.90
Microcephaly 328 2 0.61 3.43 0.41–12.48 1 0.30 2.94 0.07–16.51
Anophthalmia/microphthalmia 101 2 1.98 11.13 1.33–41.27 1 0.99 9.55 0.24–54.45
Cataract 39 1 2.56 14.41 0.36–85.18 1 2.56 24.74 0.61–146.22
Glaucoma 11 0 0.00 0.00 0.00–223.99 0 0.00 0.00 0.00–384.47
Anotia/microtia 120 0 0.00 0.00 0.00–17.55 0 0.00 0.00 0.00–30.12
Truncus arteriosus 21 0 0.00 0.00 0.00–107.96 0 0.00 0.00 0.00–185.31
Transposition of great arteries 136 2 1.47 8.27 0.99–30.44 2 1.47 14.19 1.70–52.26
Tetralogy of Fallot 123 3 2.44 13.71 2.79–41.02 1 0.81 7.85 0.20–44.53
Single ventricle 28 0 0.00 0.00 0.00–79.17 0 0.00 0.00 0.00–135.88
Ventricular septal defect 1331 20 1.50 8.45 5.14–13.10 14 1.05 10.15 5.53–17.09
Atrial septal defect 686 9 1.31 7.38 3.36–14.08 5 0.73 7.03 2.28–16.49
Endocardial cushion defect 74 0 0.00 0.00 0.00–28.74 0 0.00 0.00 0.00–49.32
Pulmonary valve atresia/stenosis 293 5 1.71 9.59 3.09–22.64 5 1.71 16.47 5.31–38.87
Tricuspid valve atresia/stenosis 53 1 1.89 10.61 0.26–61.71 1 1.89 18.21 0.45–105.93
Ebstein’s anomaly 16 0 0.00 0.00 0.00–145.77 0 0.00 0.00 0.00–250.21
Aortic valve stenosis 38 0 0.00 0.00 0.00–57.31 0 0.00 0.00 0.00–98.37
Hypoplastic left heart syndrome 52 0 0.00 0.00 0.00–41.33 0 0.00 0.00 0.00–70394
Coarctation of aorta 75 2 2.67 14.99 1.78–56.07 2 2.67 25.73 3.06–96.25
Interrupted aortic arch 14 0 0.00 0.00 0.00–169.48 0 0.00 0.00 0.00–290.90
Anomalous pulmonary venous return 43 0 0.00 0.00 0.00–50.36 0 0.00 0.00 0.00–86.44
Choanal atresia/stenosis 39 0 0.00 0.00 0.00–55.77 0 0.00 0.00 0.00–95.73
Cleft palate 228 2 0.88 4.93 0.59–18.02 2 0.88 8.46 1.02–30.93
Cleft lip with/without cleft palate 410 6 1.46 8.23 3.00–18.06 2 0.49 4.71 0.57–17.11
Esophageal atresia or tracheoesophageal 69 1 1.45 8.15 0.20–46.93 1 1.45 13.98 0.35–80.55

fistula
Pyloric stenosis 255 3 1.18 6.61 1.36–19.55 1 0.39 3.78 0.10–21.27

(Continued)
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TABLE 2
(Continued)

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Small-intestinal atresia/stenosis 89 1 1.12 6.32 0.16–36.11 1 1.12 10.84 0.27–61.98
Anal, rectal, and large-intestinal 162 1 0.62 3.47 0.09–19.61 1 0.62 5.96 0.15–33.66

atresia/stenosis
Hirschsprung’s disease 69 0 0.00 0.00 0.00–30.87 0 0.00 0.00 0.00–52.99
Biliary atresia 34 1 2.94 16.53 0.41–98.57 1 2.94 28.38 0.70–169.18
Malrotation of intestines 91 0 0.00 0.00 0.00–23.26 0 0.00 0.00 0.00–39.92
Hypospadias and epispadias 856 1 0.12 0.66 0.02–3.67 1 0.12 1.13 0.03–6.30
Renal agenesis or hypoplasia 146 1 0.68 3.85 0.10–21.79 1 0.68 6.61 0.17–37.41
Cystic kidney 144 2 1.39 7.81 0.94–28.72 2 1.39 13.40 1.61–49.30
Obstructive genitourinary defect 455 4 0.88 4.94 1.34–12.74 3 0.66 6.36 1.30–18.71
Bladder exstrophy 9 0 0.00 0.00 0.00–284.82 0 0.00 0.00 0.00–488.88
Persistent cloaca 5 0 0.00 0.00 0.00–613.50 0 0.00 0.00 0.00–1053.04
Congenital hip dislocation 312 2 0.64 3.60 0.44–13.13 1 0.32 3.09 0.08–17.36
Polydactyly 568 5 0.88 4.95 1.60–11.62 5 0.88 8.49 2.75–19.94
Syndactyly 276 5 1.81 10.18 3.28–24.06 3 1.09 10.49 2.15–30.97
Reduction deformity of upper limbs 115 4 3.48 19.55 5.24–51.44 3 2.61 25.17 5.12–75.43
Reduction deformity of lower limbs 47 1 2.13 11.96 0.30–69.98 0 0.00 0.00 0.00–78.79
Craniosynostosis 159 0 0.00 0.00 0.00–13.20 0 0.00 0.00 0.00–22.65
Diaphragmatic hernia 78 1 1.28 7.21 0.18–41.35 0 0.00 0.00 0.00–46.73
Omphalocele 90 1 1.11 6.25 0.16–35.70 0 0.00 0.00 0.00–40.37
Gastroschisis 109 1 0.92 5.16 0.13–29.35 1 0.92 8.85 0.22–50.37
Situs inversus 35 0 0.00 0.00 0.00–62.49 0 0.00 0.00 0.00–107.26
Trisomy 21 479 0 0.00 0.00 0.00–4.35 0 0.00 0.00 0.00–7.46
Trisomy 13 62 1 1.61 9.07 0.23–52.42 1 1.61 15.56 0.39–89.98
Trisomy 18 152 0 0.00 0.00 0.00–13.81 0 0.00 0.00 0.00–23.71
Total live births 316,508 563 0.18 ref 328 0.10 ref

Note. A delivery with more than one structural birth defect will be included in all relevant categories.
aTotal use = all cases of cocaine use. Isolated use = cases of cocaine use excluding those cases where methamphetamine or marijuana were also used.
bRatio of the rate of illicit drug use among birth defect cases to the rate of illicit drug use among all deliveries.
cCI = confidence interval.
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TABLE 3
Rate of Prenatal Marijuana Use Among Infants and Fetuses With Selected Birth Defects, Hawaii, 1986–2002

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Anencephaly 118 0 0.00 0.00 0.00–12.14 0 0.00 0.00 0.00–26.66
Spina bifida 144 0 0.00 0.00 0.00–12.57 0 0.00 0.00 0.00–21.79
Encephalocele 63 3 4.76 18.20 3.66–55.68 3 4.76 39.98 8.03–122.29
Holoprosencephaly 38 2 5.26 20.12 2.35–77.85 1 2.63 22.09 0.55–130.76
Hydrocephaly 353 8 2.27 8.66 3.71–17.26 7 1.98 16.65 6.65–34.66
Microcephaly 328 8 2.44 9.32 3.99–18.59 5 1.52 12.80 4.13–30.17
Anophthalmia/microphthalmia 101 3 2.97 11.35 2.30–34.14 1 0.99 8.31 0.21–47.38
Cataract 39 0 0.00 0.00 0.00–37.92 0 0.00 0.00 0.00–83.29
Glaucoma 11 0 0.00 0.00 0.00–152.30 0 0.00 0.00 0.00–334.50
Anotia/microtia 120 2 1.67 6.37 0.76–23.52 2 1.67 13.99 1.68–51.66
Truncus arteriosus 21 0 0.00 0.00 0.00–73.41 0 0.00 0.00 0.00–161.22
Transposition of great arteries 136 1 0.74 2.81 0.07–15.93 1 0.74 6.17 0.16–34.98
Tetralogy of Fallot 123 3 2.44 9.32 1.90–27.89 2 1.63 13.65 1.64–50.37
Single ventricle 28 0 0.00 0.00 0.00–53.83 0 0.00 0.00 0.00–118.22
Ventricular septal defect 1331 25 1.88 7.18 4.63–10.65 14 1.05 8.83 4.82–14.87
Atrial septal defect 686 12 1.75 6.69 3.44–11.76 5 0.73 6.12 1.98–14.35
Endocardial cushion defect 74 0 0.00 0.00 0.00–19.54 0 0.00 0.00 0.00–42.91
Pulmonary valve atresia/stenosis 293 5 1.71 6.52 2.10–16.40 4 1.37 11.46 3.10–29.66
Tricuspid valve atresia/stenosis 53 1 1.89 7.21 0.18–41.96 0 0.00 0.00 0.00–60.52
Ebstein’s anomaly 16 0 0.00 0.00 0.00–99.12 0 0.00 0.00 0.00–217.69
Aortic valve stenosis 38 1 2.63 10.06 0.25–59.54 1 2.63 22.09 0.55–130.76
Hypoplastic left heart syndrome 52 2 3.85 14.70 1.74–55.85 2 3.85 32.29 3.81–122.65
Coarctation of aorta 75 1 1.33 5.10 0.13–29.28 1 1.33 11.19 0.28–64.30
Interrupted aortic arch 14 0 0.00 0.00 0.00–115.24 0 0.00 0.00 0.00–253.09
Anomalous pulmonary venous return 43 0 0.00 0.00 0.00–34.24 0 0.00 0.00 0.00–75.20
Choanal atresia/stenosis 39 0 0.00 0.00 0.00–37.92 0 0.00 0.00 0.00–83.29
Cleft palate 228 6 2.63 10.06 3.65–22.24 4 1.75 14.73 3.98–38.23
Cleft lip with/without cleft palate 410 7 1.71 6.53 2.61–13.57 4 0.98 8.19 2.22–21.13
Esophageal atresia or tracheoesophageal 69 0 0.00 0.00 0.00–20.99 0 0.00 0.00 0.00–46.11

fistula
Pyloric stenosis 255 5 1.96 7.50 2.41–17.72 4 1.57 13.17 3.56–34.13
Small-intestinal atresia/stenosis 89 2 2.25 8.59 1.02–31.95 1 1.12 9.43 0.24–53.93
Anal, rectal, and large-intestinal 162 3 1.85 7.08 1.46–21.06 2 1.23 10.36 1.25–38.05

atresia/stenosis
Hirschsprung’s disease 69 0 0.00 0.00 0.00–20.99 0 0.00 0.00 0.00–46.11
Biliary atresia 34 0 0.00 0.00 0.00–43.81 0 0.00 0.00 0.00–96.21
Malrotation of intestines 91 1 1.10 4.20 0.11–24.00 1 1.10 9.23 0.23–52.71

(Continued)
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TABLE 3
(Continued)

Birth defect Total cases Total usea Rate (%) Rate ratiob 95% CIc Isolated usea Rate (%) Rate ratiob 95% CIc

Hypospadias and epispadias 856 4 0.47 1.79 0.49–4.59 3 0.35 2.94 0.61–8.63
Renal agenesis or hypoplasia 146 2 1.37 5.24 0.63–19.26 1 0.68 5.75 0.15–32.55
Cystic kidney 144 1 0.69 2.65 0.07–15.03 1 0.69 5.83 0.15–33.00
Obstructive genitourinary defect 455 7 1.54 5.88 2.35–12.22 5 1.10 9.23 2.98–21.69
Bladder exstrophy 9 0 0.00 0.00 0.00–193.66 0 0.00 0.00 0.00–425.34
Persistent cloaca 5 0 0.00 0.00 0.00–417.15 0 0.00 0.00 0.00–916.18
Congenital hip dislocation 312 1 0.32 1.23 0.03–6.88 0 0.00 0.00 0.00–9.99
Polydactyly 568 8 1.41 5.38 2.31–10.68 6 1.06 8.87 3.24–19.42
Syndactyly 276 13 4.71 18.00 9.47–31.30 8 2.90 24.33 10.40–48.63
Reduction deformity of upper limbs 115 7 6.09 23.27 9.15–49.50 3 2.61 21.90 4.45–65.63
Reduction deformity of lower limbs 47 3 6.38 24.40 4.86–75.80 0 0.00 0.00 0.00–68.55
Craniosynostosis 159 0 0.00 0.00 0.00–8.97 0 0.00 0.00 0.00–19.71
Diaphragmatic hernia 78 0 0.00 0.00 0.00–18.51 0 0.00 0.00 0.00–40.66
Omphalocele 90 1 1.11 4.25 0.11–24.27 0 0.00 0.00 0.00–35.13
Gastroschisis 109 3 2.75 10.52 2.14–31.57 3 2.75 23.11 4.69–69.34
Situs inversus 35 1 2.86 10.92 0.27–64.98 1 2.86 23.99 0.59–142.71
Trisomy 21 479 3 0.63 2.39 0.49–7.04 3 0.63 5.26 1.08–15.46
Trisomy 13 62 0 0.00 0.00 0.00–23.43 0 0.00 0.00 0.00–51.47
Trisomy 18 152 0 0.00 0.00 0.00–9.39 0 0.00 0.00 0.00–20.62
Total live births 316,508 828 0.26 ref 377 0.12 ref

Note. A delivery with more than one structural birth defect will be included in all relevant categories.
aTotal use = all cases of marijuana use. Isolated use = cases of marijuana use excluding those cases where methamphetamine or cocaine were also used.
bRatio of the rate of illicit drug use among birth defect cases to the rate of illicit drug use among all deliveries.
cCI = confidence interval.
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The illicit drug use rates among the birth defects were then
compared to the rate among all births by calculating the rate ratio
and 95% confidence interval (CI) using Poisson probability.

RESULTS
The HBDP identified 1640 cases of prenatal metham-

phetamine use, 563 cases of prenatal cocaine use, and 829 cases
of prenatal marijuana use among deliveries during 1986–2002.
During the same time period, there were 316,508 live births
reported in Hawaii. Thus the prenatal use rate was 0.52% for
methamphetamine, 0.18% for cocaine, and 0.26% for mari-
juana. If cases where 2 or more of the illicit drugs were used are
excluded, there were 1241 cases of prenatal methamphetamine
use, 328 cases of prenatal cocaine use, and 377 cases of prenatal
marijuana use. The prenatal use rates for isolated exposures
were then 0.39% for methamphetamine, 0.10% for cocaine,
and 0.12% for marijuana.

During this 17-yr time period, there were 7293 infants and
fetuses with one or more of the 54 birth defects of interest.
Of these cases, 6545 (89.7%) were live births, 207 (2.8%)
fetal deaths, 527 (7.2%) elective terminations, and 14 (0.2%)
unknown pregnancy outcome. The live birth rate varied from
16.1% for anencephaly to 100% for cataract, glaucoma, inter-
rupted aortic arch, choanal atresia/stenosis, Hirschsprung’s
disease, persistent cloaca, and craniosynostosis.

Table 1 contains the prenatal methamphetamine use rate
among selected birth defects. Prenatal methamphetamine rates
were significantly higher than expected for 14 (26%) of the
birth defects. Most of these defects involved the central nervous
system (holoprosencephaly, microcephaly), cardiovascular
system (transposition of great arteries, single ventricle, ventric-
ular septal defect, atrial septal defect), oral clefts (cleft palate
alone, cleft lip with/without cleft palate), and limbs (poly-
dactyly, syndactyly, reduction deformity of upper limbs). Other
birth defects with significantly higher than expected prenatal
methamphetamine rates were anophthalmia/microphthalmia,
small-intestinal atresia/stenosis, and situs inversus. If the anal-
ysis was restricted only to those cases where methamphetamine
alone was used, then the rates were significantly higher than
expected for 12 (22%) of the birth defects (microcephaly,
anophthalmia/microphthalmia, anotia/microtia, transposition
of great arteries, single ventricle, ventricular septal defect, atrial
septal defect, cleft palate alone, cleft lip with/without cleft
palate, polydactyly, situs inversus, trisomy 21).

Table 2 presents the prenatal cocaine use rate for the same
birth defects. Prenatal cocaine rates were significantly higher
than expected for 13 (24%) of the birth defects. These defects
were primarily associated with the central nervous system
(hydrocephaly), cardiovascular system (tetralogy of Fallot,
ventricular septal defect, atrial septal defect, pulmonary valve
atresia/stenosis, coarctation of aorta), oral clefts (cleft lip
with/without cleft palate), and limbs (polydactyly, syndactyly,
reduction deformity of upper limbs). Other birth defects

with significantly higher than expected cocaine rates were
anophthalmia/microphthalmia, pyloric stenosis, and obstruc-
tive genitourinary defect. If the analysis included only the
cases where cocaine alone was reported, then the rates were
significantly higher than expected for 11 (20%) of the birth
defects (transposition of great arteries, ventricular septal
defect, atrial septal defect, pulmonary valve atresia/stenosis,
coarctation of aorta, cleft palate alone, cystic kidney, obstruc-
tive genitourinary defect, polydactyly, syndactyly, reduction
deformity of upper limbs).

Table 3 shows the prenatal marijuana use rate for the 54
birth defects. Prenatal marijuana rates were significantly higher
than expected for 21 (39%) of the birth defects. The birth
defects with greater than expected prenatal marijuana use rates
were mainly defects of the central nervous system (encephalo-
cele, holoprosencephaly, hydrocephaly, microcephaly), cardio-
vascular system (tetralogy of Fallot, ventricular septal
defect, atrial septal defect, pulmonary valve atresia/stenosis,
hypoplastic left heart syndrome), oral clefts (cleft palate
alone, cleft lip with/without cleft palate), gastrointestinal
system (pyloric stenosis, small-intestinal atresia/stenosis,
anal/rectal/large-intestinal atresia/stenosis), and limbs (poly-
dactyly, syndactyly, reduction deformity of upper limbs, reduc-
tion deformity of lower limbs). Other birth defects with
significantly increased prenatal marijuana rates were anoph-
thalmia/microphthalmia, obstructive genitourinary defect, and
gastroschisis. If the analysis was limited to those cases where
marijuana by itself was used, then the rates were signifi-
cantly higher than expected for 19 (35%) of the birth defects
(encephalocele, hydrocephaly, microcephaly, anotia/microtia,
tetralogy of Fallot, ventricular septal defect, atrial septal
defect, pulmonary valve atresia/stenosis, hypoplastic left
heart syndrome, cleft palate alone, cleft lip with/without
cleft palate, pyloric stenosis, anal/rectal/large-intestinal
atresia/stenosis, obstructive genitourinary defect, polydactyly,
syndactyly, reduction deformity of upper limbs, gastroschisis,
trisomy 21).

DISCUSSION
Using data from a statewide, population-based registry that

covered over 300,000 births and a 17-yr period, this investiga-
tion examined the association between over 50 selected birth
defects and maternal use of methamphetamine, cocaine, or
marijuana during pregnancy. Much of the literature on prenatal
illicit drug use and birth defects involved case reports, involved
a small number of cases, were not population-based, or focused
on only one or a few particular birth defects.

There are various limitations to this investigation. The
number of cases for many of the birth defects categories was
relatively small, limiting the ability to identify statistically
significant differences and resulting in large confidence inter-
vals. In spite of this, a number of statistically significant anal-
yses were identified. Some statistically significant results might
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be expected to occur by chance. If 1 in every 20 analyses is
expected to result in statistically significant differences solely
by chance, then among the 162 analyses performed in this
study, 8 would be expected to be statistically significant by
chance. However, 48 statistically significant differences were
identified. Thus, not all of the statistically significant results
are likely to be due to chance.

This study included all pregnancies where metham-
phetamine, cocaine, or marijuana use was identified through
either report in the medical record or positive toxicology
test. This was done because neither self-report nor toxicology
testing is likely to identify all instances of prenatal illicit
drug use (Christmas et al., 1992). In spite of using both
methods for determining prenatal illicit drug use, all pregnan-
cies involving methamphetamine, cocaine, or marijuana were
not likely to have been identified. The degree of under ascer-
tainment is unknown. A previous study examined the maternal
drug use rate around the time of delivery in Hawaii during 1999
(Derauf et al., 2003). This study found 1.4% of the pregnancies
involved methamphetamine use and 0.2% involved marijuana
use. Among 1999 deliveries, the HBDP identified a prenatal
methamphetamine use rate of 0.7% and a marijuana use rate of
0.4%. However, comparisons between the 2 studies should be
made with caution because the previous study collected data
from a single hospital during only a 2-mo period.

Another limitation is that the present study did not control
for potential confounding factors such as maternal demo-
graphic characteristics, health behaviors, and prenatal care.
Increased risk of birth defects has been associated with inade-
quate prenatal care (Carmichael et al., 2002), maternal smoking
(Honein et al., 2001), and maternal alcohol use (Martinez-Frias
et al., 2004). These factors are also found with maternal illicit
drug use (Cosden et al., 1997; Hutchins, 1997; Norton-Hawk,
1997). Thus the increased risk of selected birth defects with
illicit drug use in this study might actually be due to one
of these other underlying factors. Unfortunately, information
on some of the potential confounding factors such as socioe-
conomic status are not collected by the HBDP. Information
collected on some other factors such as smoking and alcohol
use is suspect because of negative attitudes toward their use
during pregnancy. Moreover, the small number of cases among
many of the birth defects groups would make controlling for
these factors difficult.

Finally, this investigation included use of the illicit drugs at
any time during the pregnancy. Most birth defects are believed
to occur at 3–8 wk after conception (Makri et al., 2004; Sadler,
2000). In a portion of the cases, the drug use might have
occurred at a time when it could not have caused the birth
defect. Furthermore, this study does not include information
on dose; however, teratogenicity of a substance may depend on
its dose (Werler et al., 1990). In spite of the various potential
concerns of the present study, data may suggest future areas of
investigation where the limitations inherent in the present one
are excluded.

This investigation found significantly higher than expected
rates for prenatal use of methamphetamine, cocaine, and mari-
juana among a number of specific birth defects. Although
not identical, there were general similarities between the three
illicit drugs and the birth defects with which they were associ-
ated. Increased rates for methamphetamine, cocaine, and mari-
juana occurred predominantly among birth defects affecting the
central nervous system, cardiovascular system, oral clefts, and
limbs. There were also increased rates of marijuana use with
a variety of birth defects associated with the gastrointestinal
system. With the exception of marijuana and encephalocele,
none of illicit drugs were associated with neural-tube defects
(anencephaly, spina bifida, encephalocele). The rates of use for
the three illicit drugs were not significantly elevated with eye
defects other than anophthalmia/microphthalmia, genitourinary
defects, and musculoskeletal defects aside from limb defects.
In the majority of instances, the associations between particular
illicit drugs and birth defects were found whether or not those
cases involving use of multiple types of drugs were included.
Of the 14 significant associations between methamphetamine
and specific birth defects, 10 (71.4%) remained once multiple
drug cases were excluded. Corresponding rates were 61.5% (8
of 13) for cocaine and 81.0% (17 of 21) for marijuana.

The similarities in the patterns of birth defects with
which methamphetamine, cocaine, and marijuana are associ-
ated might suggest that the three drugs exert similar effects on
embryonic and fetal development. This might not be expected,
considering that the three illicit drugs differ in their mecha-
nisms of action and clinical effects (Leiken & Paloucek, 1998).

Some of the associations between methamphetamine,
cocaine, and marijuana observed in the present investigation
were previously reported. Other studies observed similar asso-
ciations, or lack thereof, of methamphetamine or amphetamine
with neural-tube defects (Shaw et al., 1996) and cardiovascular
and musculoskeletal defects (McElhatton et al., 2000); cocaine
with neural-tube defects (Shaw et al., 1996), cardiovascular
defects (Lipshultz et al., 1991), ventricular septal defect and
atrial septal defect (Ferencz et al., 1997c; Martin & Edmonds,
1991), tricuspid atresia (Ferencz et al., 1997d), craniosyn-
ostosis (Gardner et al., 1998), and situs inversus (Kuehl &
Loffredo, 2002); and marijuana with neural-tube defects (Shaw
et al., 1996), single ventricle (Steinberger et al., 2002), ventric-
ular septal defect (Williams et al., 2004), tricuspid atresia
(Ferencz et al., 1997d), and gastroschisis (Torfs et al., 1994).

In contrast, this study differed from other research with
respect to their findings regarding methamphetamine or
amphetamine and gastroschisis (Torfs et al., 1994); cocaine and
microcephaly (Martin & Edmonds, 1991), conotruncal defects
(Adams et al., 1989), endocardial cushion defect (Ferencz et al.,
1997b), situs inversus (Ferencz et al., 1997a), oral clefts (Beaty
et al., 2001), and genitourinary defects (Abe et al., 2003; Battin
et al., 1995; Martin & Edmonds, 1991); and marijuana and
conotruncal defects (Adams et al., 1989), Ebstein anomaly
(Ferencz et al., 1997e; Correa-Villasenor et al., 1994), and oral
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clefts (Beaty et al., 2001). The inconsistent findings between
this and the other studies could be due to differences in study
methodology, case classification, or number of cases.

The mechanisms by which methamphetamine, cocaine, and
marijuana might contribute to the rates for birth defects is
currently unknown. Any potential explanation would have to
take into account the observation that each of the illicit drugs
was associated with a variety of specific birth defects affecting
different organ systems. This might suggest that these three
drugs would need to influence a basic, common factor involved
in embryonic development.

Folic acid is involved in nucleic acid synthesis and cellular
division (Scholl & Johnson, 2000) and thus would play an
important role in the early growth and cellular proliferation
of the embryo. Folic acid has been found to prevent a variety
of birth defects (Forrester & Merz, 2005). Thus, anything that
interferes with the activity of folic acid might be expected
to increase the risk for these birth defects. Many of these
birth defects were associated with methamphetamine, cocaine,
and/or marijuana in the present study. However, two of the
birth defects most closely affected by folic acid—anencephaly
and spina bifida—were not associated with any of the three
illicit drugs.

Vascular disruption has been suggested as a potential cause
for a variety of different birth defects such as intestinal
atresia/stenosis, limb reduction defects, and gastroschisis.
Since cocaine is a vasoconstrictor, it has been hypothesized that
cocaine use could increase the risk of these vascular disrup-
tion defects (Hume et al., 1997; Martin et al., 1992; Hoyme
et al., 1983; de Vries, 1980). Although this investigation found
an association between cocaine and limb reduction deformi-
ties, no association was found with intestinal atresia/stenosis
or gastroschisis.

In conclusion, this study found that prenatal use of
methamphetamine, cocaine, or marijuana were associated with
increased risk of a variety of birth defects. The affected
birth defects were primarily associated with particular organ
systems. Because of various limitations of the study, further
research is recommended.
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Summary of Cannabis Genotoxicity Papers

There are several principal pathways to inheritable genotoxicity, mutagenicity and teratogenesis
induced by cannabis which are known and well established at this time including the following.
These three papers discuss different aspects of these effects.

1) Stops Brain Waves and Thinking The brain has both stimulatory and inhibitory pathways.
GABA is the main brain inhibitory pathway. Brain centres talk to each other on gamma
(about 40 cycles/sec) and theta frequencies (about 5 cycles/sec), where the theta waves are
used as the carrier waves for the gamma wave which then interacts like harmonics in music.
The degree to which the waves are in and out of phase carries information which can be
monitored externally. GABA (γ-aminobutyric acid) inhibition is key to the generation of the
synchronized firing which underpins these various brain oscillations. These GABA
transmissions are controlled presynaptically by type 1 cannabinoid receptors (CB1R’s) and
CB1R stimulation shuts them down. This is why cannabis users forget and fall asleep.

2) Blocks GABA Pathway and Brain Formation GABA is also a key neurotransmitter in
brain formation in that it guides and direct neural stem cell formation and transmission and
development and growth of the cerebral cortex and other major brain areas. Gamma and theta
brain waves also direct neural stem cell formation, sculpting and connectivity. Derangements
then of GABA physiology imply that the brain will not form properly. Thin frontal cortical
plate measurements have been shown in humans prenatally exposed to cannabis by fMRI.
This implies that their brains can never be structurally normal which then explains the long
lasting and persistent defects identified into adulthood.

3) Epigenetic Damage DNA not only carries the genetic hardware of our genetic code but it
also carries the software of the code which works like traffic lights along the sequence of
DNA bases to direct when to switch the genes on and off. This is known as the “epigenetic
code”. Fetal alcohol syndrome is believed to be due to damage to the software epigenetic
code. The long lasting intellectual, mood regulation, attention and concentration defects
which have been described after in utero cannabis exposure in the primary, middle and high
schools and as college age young adults are likely due to these defects. Epigenetics “sets in
stone” the errors of brain structure made in (2) above.

4) Arterial Damage. Cannabis has a well described effect to damage arteries through (CB1R’s)
(American Heart Association 2007) which they carry in high concentration (Nature Reviews
Cardiology 2018). In adults this causes heart attack (500% elevation in the first hour after
smoking), stroke, severe cardiac arrhythmias including sudden cardiac death; but in
developing babies CB1R’s acting on the developing heart tissues can lead to at least six major
cardiac defects (Atrial- ventricular- and mixed atrio-ventricular and septal defects, Tetralogy
of Fallot, Epstein’s deformity amongst others), whilst constriction of various babies’ arteries
can lead to serious side effects such as gastroschisis (bowels hanging out) and possibly absent
limbs (in at least one series).

5) Disruption of Mitotic Spindle. When cells divide the separating chromosomes actually slide
along “train tracks” which are long chains made of tubulin. The tubulin chains are called
“microtubules” and the whole football-shaped structure is called a “mitotic spindle”.
Cannabis inhibits tubulin formation, disrupting microtubules and the mitotic spindle causing
the separating chromosomes to become cut off in tiny micronuclei, where they eventually
become smashed up and pulverized into “genetic junk”, which leads to foetal malformations,
cancer and cell death. High rates of Down’s syndrome, chromosomal anomalies and cancers
in cannabis exposed babies provide clinical evidence of this.

6) Defective Energy Generation & Downstream DNA Damage DNA is the crown jewel of
the cell and its most complex molecule. Maintaining it in good repair is a very energy
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intensive process. Without energy DNA cannot be properly maintained. Cannabis has been
known to reduce cellular energy production by the cell’s power plants, mitochondria, for
many decades now. This has now been firmly linked with increased DNA damage, cancer
formation and aging of the cells and indeed the whole organism. As it is known to occur in
eggs and sperm, this will also damage the quality of the germ cells which go into forming the
baby and lead directly to damaged babies and babies lost and wasted through spontaneous
miscarriage and therapeutic termination for severe deformities.

7) Cancer induction Cannabis causes 12 cancers and has been identified as a carcinogen by the
California Environmental Protection agency (2009). This makes it also a mutagen. 4 of these
cancers are inheritable to children; i.e. inheritable carcinogenicity and mutagenicity. All four
studies in testicular cancer are strongly positive (elevation by three fold). Carcinogen =
mutagen = teratogen.

8) Colorado’s Teratology Profile. From the above described teratological profile we would
expect exactly the profile of congenital defects which have been identified in Colorado
(higher total defects and heart defects, and chromosomal defects) and Ottawa in Canada (long
lasting and persistent brain damage seen on both functional testing and fMRI brain scans in
children exposed in utero) where cannabis use has become common. Gastroschisis was
shown to be higher in all seven studies looking at this; and including in Canada, carefully
controlled studies. Moreover in Australia, Canada, North Carolina, Colorado, Mexico and
New Zealand, gastroschisis and sometimes other major congenital defects cluster where
cannabis use is highest. Colorado 2000-2013 has experienced an extra 20,152 severely
abnormal births above the rates prior to cannabis liberalization which if applied to the whole
USA would equate to more than 83,000 abnormal babies live born annually (and probably
about that number again therapeutically aborted); actually much more since both the number
of users and concentration of cannabis have risen sharply since 2013, and cannabis has been
well proven to be much more severely genotoxic at higher doses.

9) Cannabidiol is also Genotoxic and tests positive in many genotoxicity assays, just as
tetrahydrocannabinol does.

10) Births defects registry data needs to be open and transparent and public. At present it is
not. This looks too much like a cover up.
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It should be noted that a major factor in interpreting these curves is the termination rate.
Since therapeutic termination is a major management option chosen by many parents for the
more severe defects, and widely recommended by many obstetricians, one cannot really form
a comprehensive understanding of the applicable trends without knowledge of and due
consideration to, the associated antenatal termination rate for the applicable defect.

Both for this reason, and because the data only goes to 2013 it is considered that this data is
only reflecting the lower bound of the effects in question. That is to say that these estimates
form a lower estimate of the putative cannabis -related teratogenic effect.

Slide Series

Slide 1 (S1) introduces a title slide for this slide series.

S2 shows the overall pattern of births in Colorado which is drawn on two scales for clarity.
The equation given for the top line shows that whilst the birth rate in Colorado fluctuates
somewhat over the study period there is an overall decline of 159 births per years over the
study period, albeit the detailed pattern is somewhat irregular. It is important to bear this in
mind in considering the following graphs showing numbers of defects and rates.

S3 shows Down’s syndrome data from Western Australia. This slide makes it very clear that
whilst the rate of Downs syndrome born as live births is declining somewhat, the termination
rate for this anomaly has risen markedly, so that their sum shows a clear upward trend. This
important graph clearly underscores the critical role played by the applicable termination data
in interpreting the trend lines under consideration. One notes that the termination data for
Colorado for the present defects is believed not to be available at the time of writing.

On the basis of this graph it may be that the effects described below are as much as one half to
one third of their total level net of the effect of therapeutic termination – although the level of
this is obviously highly defect specific.

S4 introduces a title slide for this section.

S5 shows a very important slide which graphs the numbers and rates for all major congenital
anomalies. It shows a clear upward trend for both numbers and rates. The raw data is given
in the table to the right hand side. The numbers show a 69% rise across this fourteen year
period, whilst the rates show a 70% rise. This annualizes to approximately 4.93% annual rate
of rise for numbers and a 5.01% annual rate of rise for rates. Maintained over a 14 year
period this is a not insignificant increase in the health burden to both individuals and the
health system which treats these significant inborn defects.

There is also a rich literature linking antenatal cannabis use with cardiovascular defects 1-6,
and a statement from the combined American Heart Association and American Academy of
Pediatrics acknowledging that there is a causal link between cannabis and congenital heart
disease 7.

S6 shows these rates as a percentage including the data on the graph.
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The graphs in S7 show a significant rise in the rate of congenital heart disease. The equation
on the upper graph shows an additional 40 cases per year (line slope). Both the numbers and
rates of congenital heart disease are rising by about 4.5% annually, and about 61% over the
whole period.

Ventricular Septal Defect (VSD) is also linked with cannabis use 1,6,7. S8 shows that this is
rising by about 6 cases annually, 35% overall, and about 2.5% annually.

S9 illustrates trends in the ostium secundum Artrial Septal Defect (ASD) which has
previously been linked with cannabis exposure 6,7. This is noted to be rising by about 46
cases annually; to have increased 260% over the whole period and to be rising at 18%
annually. Indeed one also notes that the linear regression line accounts for 89% of the
variance of the data. This implies that the rising trend is a strong and dominant factor in this
trend line.

S10 shows data for microcephaly. One notes and average of 2 extra cases annually, a 96%
rise over the 14 year period, and an annual rate of rise of 7%.

Chromosomal abnormalities have been reported as being associated with antenatal cannabis
use. The data in S11 shows a increase of 3 cases per year, of 28% over the whole period and
of 2% annually.

S12 introduces a summary slide for some of the selected stationary trends.

Many of the trends for congenital defects in Colorado are essentially stationary. Such data is
shown for Cleft lip with or without cleft palette in S13, and for combined abdominal wall
defects in S14. Several of the other defects which were inspected also appeared to be
showing no real time dependent change or to occur at such low level that their trends are not
stable. One notes in particular that gastroschsis, a defect which has been strongly linked with
cannabis use in many studies 6,8-14 does not have data presented separately for it on the
Colorado Health Information Dataset site at this time.

S15 presents a title slide for the cumulative and summative effect.

S16 shows a simple method, carry-forward projection for analyzing historcial trends. This is
done first for births. The birth rate in the first 1-2 years (whichever is the lower) is simply
carried forwards as if it had not changed in any of the subsequent years. The actual birth rate
is listed in the second column. The difference appears in the fourth column and is the
difference from the expected rate had the historical trends been simply continued along.

These various columns are then summed at their base as shown. One notes that an extra
33,311 births occurred than would have been expected, representing a 3.6% increase in births
over this historical period, which annualizes to a 0.26% increase per year.

S17 shows the trend for all major congenital birth defects. This slide shows that whereas
67,620 would have been expected based on the historical trend, in fact 87,772 were observed,
an excess of 20,152 cases or 29.8%.
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S18 performs a similar calculation for all major cardiovascular defects and finds a 37% excess
caseload.

S19 performs a similar function and finds a 17% excess for VSD.

S20 does the same function for ostium secundum ASD and finds a 98% excess caseload.

S21 shows a 30% excess for Microcephaly. The significance of this finding in a Zika virus
era will I am sure not be lost on you.

S22 shows the data for the combined chromsomal anomalies and finds a 28% excess caseload.

S23 introduces a title slide for the final Summary section.

S24 shows the apparently very close correlation between all major congential anoamlies and
cannabis use by various age groups in Colorado, as taken from the SAMHSA NSDUH survey
at https://www.samhsa.gov/data/population-data-nsduh/reports?tab=38 .

S25 Shows the key graph again with its data included.

S26 presents the output of the R statistical analystical software showing the correlation
coefficient, R=0.953852 and P = 0.00006594.

S27 presents another correlation calculation this time with the young adult rate of cannabis
use again from the NSDUH SAMHSA survey (Data given in S24). In this study
R=0.9254789 and P = 0.00003457.

S28 shows similar data with the major anomaly rate compared to the cannabis use rate in all
Colorado dwellers over the age of 12 years. R=0.8825038 and P = 0.00002936.

S29 again shows this key graph.

S30 shows a final slide which summarizes all of the above information in a single table. The
first column lists the various rising defects which have been considered. The second column
shows the numbers of actual cases observed over the study period. The third column shows
the number which would have been expected had the baseline trend been simply projected
forwards. The fourth column gives the observed excess of cases for these defects. The fifth
column shows the percentage rise over the entire period. The first line shows the numbers of
births which forms the baseline trend against which the other categories are compared. The
numbers of births rose 3.6% in the period 2000-2013. The other anomalies are compared with
the rise in births to calculate the final column as a multiplicand of the baseline increase in
birth numbers.

As noted above, this factor is believed to be a lower bound baseline since it is expected that
for many of these defects foetal wastage would have occurred either by natural spontaneous
miscarriage or by induced therapeutic termination of pregnancy, as indicated in Slide 3.
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Conclusion

Hence these data indicate a signficant rise in the official numbers of major congenital
anomalies in Colorado over the period when cannabis was gaining in popularity and into the
very start of its medical legalization. Hence the figures are believed to be an underestimate of
the cannabis related effect. They would almost certainly be substantially increased were data
on therapeutic and other termination of pregnancy to become available. Hence these
estimates included in the final table on S23 can only been seen as estimating the lower bound
of the cannabis effect. Since the net effect shows an increase of 30% of all major defects, this
can only be interpreted as a finding generating significant concern.

Matters of attributable risk effect arise in terms of interpreting how much of the increase
might properly be attributed to cannabis itself and how much to various other extraneous and
unknown confounding causes. Given that there is a published literature relating cannabis to
all of these identified anomalies it seems likely that some significant fraction of the 20,152
excess cases can well be laid at the feet of cannabinoids. One notes also that these patients
are exposed to mixed cannabinoids as occur in natural and cultured cannabis, including
tetrahydrocannabinol, cannabidiol, cannabinol, cannabichromene, cannabiverin and many
others so that all of them are potentially implicated on epidemiological grounds. Moreover
many studies implicate multiple cannabinoids including cannabidiol in both genotoxic 15-24

and arteriopathic and / or arteritic 25-65 pathways.

The above cited literature links both maternal and paternal cannabis exposure 4 to
teratological outcomes particularly congenital heart disease which is also the commonest of
the major foetal malformations. The above citations also demonstrate significant multiple and
complex interactions between cannabinoids and the cardiovascular system. Thus there are
multiple potential mechanistic pathways from cannabis exposure to foetal pathology.

It was considered at the present time that it was important to bring these data to your attention
as they are likely of significant public health import, particularly when amplified up to the
national level. This is particularly so if, as is now a matter of record, cannabis use is
becoming more common 64,66, if cannabis itself is becoming more concentrated as has also
been amply documented 64 and if the major effect of therapeutic abortion is also included as
seems only proper 67.
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Please feel free to call on me if you would like further information concerning the research to
which I have referred.

Yours sincerely,

Assoc. Prof. Dr. Stuart Reece.
University of Western Australia and
Edith Cowan University,
Perth,
Australia.
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