| | A | В | С | D | E | |-------------------------------------|--|--|---|--|--| | nderstanding | Complex and enaltenging concepts and theory as have been separational and unterpresed. | Complex or challenging concepts and theories have been reproduced and interpreted | Concepts and theories have been reproduced | Simple ideas and concepts have been reproduced | Isolated fuel and combustion facts have been reproduced | | Knowledge and Conceptual Understand | Complex asserved phenomena have been explained by comparing them to theoretical predictions | Observed phenomena
have been explained by
comparing them to
theoretical predictions | Simple observed or
expected phenomena
have been explained | Simple observed or
expected phenomena
have been described | Simple isolated phenomena have been recognised | | | Algorithms and concepts
have been linked and
applied in complex and
challenging situations | Algorithms and concepts
have been linked and
applied in complex or
challenging situation | Algorithms have beer.
applied in simple
situations | Algorithms have been applied | Simple given algorithms
have been applied | | Г | A | В | С | D | E | | ies | A significant, justified question or hypothesis has been formulated. The experimental design is efficient, effective and has been refined by the student. | A justified question or
hypothesis has been
formulated
An experiment has been
designed in response to
the question/hypothesis | A question or hypothesis
has been formulated
A suitable standard
investigation has been
selected | A given investigation has
been implemented | Given procedures have
been used with guidance | | Investigative Processes | Risks to safety have been assessed and the investigation has been managed. Technology has been appropriately selected, applied and adapted to gather, record and process valid data. | assessed and the investigation has been managed. Technology has been appropriately selected and applied to pathor, record and | Risks to safety have been
assessed and the
investigation has been
managed. Technology
has been appropriately
selected and applied to
gather and record data | Equipment and
technology have been
safely used. Technology
has been used to gather
and record data | Safe procedures have
been followed under
supervision. Equipment
has been used to gather
data | | | trius de la | Data has been analysed
to identify patterns and
trends.
Data has been analysed
to identify errors and
anomalies | Data has been analysed
to identify obvious
patterns and trends.
Data has been analysed
to identify obvious errors
and anomalies | Obvious patterns in the
data have been
identified.
Obvious errors in the
data have been identified | Data has been recorded | | | A | В | С | D | Е | | gu | Complex relationships
between variables have
been analysed | Complex relationships
between variables have
been analysed | Relationships between
variables have been
described | Simple relationships
between variables have
been identified | Obvious relationships
between variables have
been identified | | Evaluating and Concluding | Extensions or
adaptations of the
investigation have been
explored.
The conclusion has been | Extensions or
adaptations of the
investigation have been
explained.
The conclusion has been
discussed | Extensions or
adaptations of the
investigation have been
described.
A conclusion has been
stated | Improvements or possible outcomes of the investigation have been identified | A statement has been made about the outcome of the investigation | | Evaluat | been selected with
discrimination to make
meaning clear.
A range of tables and
graphs have been used
innovatively. | Data and ideas have
been selected to make
meaning clear.
A range of tables and
graphs have been used. | Data and ideas have
been selected to convey
meaning.
A range of formats have
been used. | Data or ideas have been presented in a range of formats | Scientific data or ideas
have been presented | Criteria-standards marking sheet provided by QSA (20th March, 2013) to parliament. Note: the coloured sections are those that had to be fulfilled by students to get A standard gradings. (see p4) The orange box was unclear but the criteria ('standards') the students had to match in their essays were: "Data has been systematically analysed to identify relationships between patterns, trends, errors & anomalies" # Real-life student's results-sheet | Exit
Criteria | Type
(Relative
Complexity) | A | 8 | С | D | E | |--------------------|----------------------------------|---|---|---|----|---| | CU3
CU1
CCU3 | 1 | | | 1 | | | | CU1 | | | | / | | | | (CU3 | | | | | | | | KCU3 | ** | | / | | | | | ксиз | ** | | | / | | | | KCU3 | ** | | 1 | | | | | KCU3 | *** | | 1 | | | | | KCU3 | | | | | V, | | | KCU3 | ** | | | | / | | | KCU3 | 227 | | 1 | , | | | | KCU3 | 654 | | | V | | | | IP3 | ** | | | | V | | | IP3 | *** | | | - | | | | EC2 | *** | | | - | | | | EC1 | *** | | | | | - | | | | | | | | | QSA has published instructions to teachers to block off 'A's and 'B's grades. That is, core knowledge questions are deemed too low 'standard'. Therefore, the average student who gets the description **correct** (half-right answer) **gets a 'D'**. Note: teachers know this. That is why they do not need more workshops, nor 'professional development', nor 'support' - The fact is: they do <u>not</u> want to use flawed letter-marking of each question that demoralises students Accessed 5th June, 2013 http://www.qsa.qld.edu.au/downloads/senior/snr_chemistry_07_as_samp_1.pdf KCU Describe and explain Most covalent molecular substances exist as gases or liquids or waxy solids at room temperature. Explain why this is the case and why sucrose is different and able to exist with a crystalline structure. KCU Link and apply | Criteria | A | 3 | C | D | E | | |--------------------------------|--|---|--|---|--|--| | KCU
Describe
and explain | This question does not allow students to compare and explain complex concepts. | | Explains general physical properties of covalent molecular substances in terms of their structure. | Describes structure and/or general physical properties of covalent molecular substances | Recognises
isotated chemical
facts about
covalent molecular
substances | | | KCU
Link and
apply | This question does
not allow students
to demonstrate
exchanation of
complex concepts
and processes. | Links and applies
principles relating
bonding type and
forces of attraction
to physical
properties of
socross | Applies principles
relating bonding
type and forces of
attraction to
physical properties
of sucrose | Applies principles relating forces of attraction to physical properties of sucrose | Recognises forces
of attraction and/or
physical properties
of sucrese | | Queensland Studies Authority Ground floor, 205 Aon Street, Brisbane PO Box 307, Spring Hill Queensland 4004 Phone: (07) 3864-0269; Fax: (07) 3221-2563; Email: office@gsa.gld.edu.au; Website: www.gsa.gld.edu.au QSA's eg of a 'reasonable' assignment - yet went over QSA's own recommendations; also demonstrated errors in data and calculations, yet was awarded 'A's in marking # CURRENT: Old CHEMISTRY Syllabus (2007) QSA (NB: No detailed subject content) PHYSICS SENIOR SYLLABUS # Appendix 3: Indication of depth of treatment The following lists provide suggestions for content. Content has been listed under the organisers to provide an indication of suggested subject matter for inclusion. Some content will be applicable under one or more of the organisers, and in those cases it has been repeated. The content listed is not exhaustive. QSA's current "Physics Senior Syllabus 2007". No specific content is mandated. #### Forces - Analysis of scalar and vector quantities using algebraic and graphical techniques, e.g. motion, energy, force, momentum - Quantitative treatment of mechanical contact forces (simple to complex treatments), e.g. equilibrium problems, inclined plane problems - Qualitative and quantitative treatment of internal and external energy transfers, e.g. heat, kinetic theory and electricity - · Quantitative treatment of ideal gases - Quantitative treatment of non-contact forces, e.g. magnetic and electric: $$F = Bqv\sin\theta \qquad F$$ $$F = BIL \sin \theta$$ $$E = \frac{F}{C}$$ # PREVIOUS: Qld CHEMISTRY Syllabus (1995) Qld Board of Senior Secondary School Studies # **6** Core Requirements "This syllabus has been designed to cater for a four-semester course of study of not less than 55 hours per semester of timetabled school time, including time for assessment and field work. The subject matter has been arranged into nine topics, for which core minimum depth of treatment and ideas for extension have been detailed. Within this syllabus, 'core material' is defined as the minimum set of "It is essential for students to be confident in the use of quantitative terms and reliable data within a fundamental framework of the concepts of space and time." (p. 14) common experiences that all students of the subject should have." (p. 12) Previous Syllabus had <u>detailed core</u> knowledge ### **Topic 2 Forces and Motion** Resources (example textbooks) Physics for a Modern World, Bunn, Jacaranda Wiley, chaps 3-7 and 10; Fundamentals of Senior Physics Parham & Webber, Heinemann Educational Aust. | CORE MATERIAL | MINIMUM DEPTH OF TREATMENT OF CORE | IDEAS FOR EXTENSION MATERIAL | |---------------------------------------|---|--| | 1. Linear uniform motion | Scalar/Vector quantities. Distance/Displacement. Speed/Velocity. Acceleration. Construction and interpretation of graphs of the above with time. Quantitative analyses of the above graphs. Problems involving equations for linear uniform motion Uniform velocity: v = s/t Uniform acceleration: v = u + at s = ½ (u + v)t s = ut + ½at² s = (v² - u²)/2a | Free fall involving terminal velocity Pressure and density P = F/A | | 2. Forces and Newton's Laws of Motion | Newton's three Laws of Motion | velocity and acceleration, torque, moments of inertia, couples, principle of moments | | | Quantitative treatment of mechanical contact forces and
weight F = ma W = mg | Motion of satellites and planets (combining the
universal law of gravitation and uniform circular |